Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3

Identifieur interne : 001005 ( Istex/Corpus ); précédent : 001004; suivant : 001006

Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3

Auteurs : H.-C. Wille ; R. P. Hermann ; I. Sergueev ; U. Pelzer ; A. Mchel ; T. Claudio ; J. Peron ; R. Rffer ; A. Said ; Yu. V. Shvyd'Ko

Source :

RBID : ISTEX:CB1BC07DA6D480B8F967348F2E658CD7EC2D5439

Abstract

We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12)ns and 35493.12(30)eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.

Url:
DOI: 10.1209/0295-5075/91/62001

Links to Exploration step

ISTEX:CB1BC07DA6D480B8F967348F2E658CD7EC2D5439

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
<author>
<name sortKey="Wille, H C" sort="Wille, H C" uniqKey="Wille H" first="H.-C." last="Wille">H.-C. Wille</name>
<affiliation>
<mods:affiliation>Deutsches Elektronen-Synchrotron - D-22607 Hamburg, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hans.christian.wille@desy.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hermann, R P" sort="Hermann, R P" uniqKey="Hermann R" first="R. P." last="Hermann">R. P. Hermann</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sergueev, I" sort="Sergueev, I" uniqKey="Sergueev I" first="I." last="Sergueev">I. Sergueev</name>
<affiliation>
<mods:affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pelzer, U" sort="Pelzer, U" uniqKey="Pelzer U" first="U." last="Pelzer">U. Pelzer</name>
<affiliation>
<mods:affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mchel, A" sort="Mchel, A" uniqKey="Mchel A" first="A." last="Mchel">A. Mchel</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Claudio, T" sort="Claudio, T" uniqKey="Claudio T" first="T." last="Claudio">T. Claudio</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peron, J" sort="Peron, J" uniqKey="Peron J" first="J." last="Peron">J. Peron</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rffer, R" sort="Rffer, R" uniqKey="Rffer R" first="R." last="Rffer">R. Rffer</name>
<affiliation>
<mods:affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Said, A" sort="Said, A" uniqKey="Said A" first="A." last="Said">A. Said</name>
<affiliation>
<mods:affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shvyd Ko, Yu V" sort="Shvyd Ko, Yu V" uniqKey="Shvyd Ko Y" first="Yu. V." last="Shvyd'Ko">Yu. V. Shvyd'Ko</name>
<affiliation>
<mods:affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CB1BC07DA6D480B8F967348F2E658CD7EC2D5439</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1209/0295-5075/91/62001</idno>
<idno type="url">https://api.istex.fr/document/CB1BC07DA6D480B8F967348F2E658CD7EC2D5439/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001005</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
<author>
<name sortKey="Wille, H C" sort="Wille, H C" uniqKey="Wille H" first="H.-C." last="Wille">H.-C. Wille</name>
<affiliation>
<mods:affiliation>Deutsches Elektronen-Synchrotron - D-22607 Hamburg, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hans.christian.wille@desy.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hermann, R P" sort="Hermann, R P" uniqKey="Hermann R" first="R. P." last="Hermann">R. P. Hermann</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sergueev, I" sort="Sergueev, I" uniqKey="Sergueev I" first="I." last="Sergueev">I. Sergueev</name>
<affiliation>
<mods:affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pelzer, U" sort="Pelzer, U" uniqKey="Pelzer U" first="U." last="Pelzer">U. Pelzer</name>
<affiliation>
<mods:affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mchel, A" sort="Mchel, A" uniqKey="Mchel A" first="A." last="Mchel">A. Mchel</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Claudio, T" sort="Claudio, T" uniqKey="Claudio T" first="T." last="Claudio">T. Claudio</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peron, J" sort="Peron, J" uniqKey="Peron J" first="J." last="Peron">J. Peron</name>
<affiliation>
<mods:affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rffer, R" sort="Rffer, R" uniqKey="Rffer R" first="R." last="Rffer">R. Rffer</name>
<affiliation>
<mods:affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Said, A" sort="Said, A" uniqKey="Said A" first="A." last="Said">A. Said</name>
<affiliation>
<mods:affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shvyd Ko, Yu V" sort="Shvyd Ko, Yu V" uniqKey="Shvyd Ko Y" first="Yu. V." last="Shvyd'Ko">Yu. V. Shvyd'Ko</name>
<affiliation>
<mods:affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Europhysics Letters</title>
<title level="j" type="abbrev">EPL</title>
<idno type="ISSN">0295-5075</idno>
<idno type="eISSN">1286-4854</idno>
<imprint>
<publisher>IOP Publishing Ltd</publisher>
<date type="published" when="2010">2010</date>
<biblScope unit="volume">91</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="5">5</biblScope>
<biblScope unit="production">Printed in France</biblScope>
</imprint>
<idno type="ISSN">0295-5075</idno>
</series>
<idno type="istex">CB1BC07DA6D480B8F967348F2E658CD7EC2D5439</idno>
<idno type="DOI">10.1209/0295-5075/91/62001</idno>
<idno type="articleID">epl_12959</idno>
<idno type="articleNumber">62001</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0295-5075</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12)ns and 35493.12(30)eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>H.-C. Wille</name>
<affiliations>
<json:string>Deutsches Elektronen-Synchrotron - D-22607 Hamburg, Germany, EU</json:string>
<json:string>E-mail: hans.christian.wille@desy.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. P. Hermann</name>
<affiliations>
<json:string>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</json:string>
<json:string>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>I. Sergueev</name>
<affiliations>
<json:string>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>U. Pelzer</name>
<affiliations>
<json:string>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Mchel</name>
<affiliations>
<json:string>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</json:string>
<json:string>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. Claudio</name>
<affiliations>
<json:string>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</json:string>
<json:string>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Peron</name>
<affiliations>
<json:string>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Rffer</name>
<affiliations>
<json:string>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Said</name>
<affiliations>
<json:string>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yu. V. Shvyd'ko</name>
<affiliations>
<json:string>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>letter</json:string>
</originalGenre>
<abstract>We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12)ns and 35493.12(30)eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.</abstract>
<qualityIndicators>
<score>4.884</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>704</abstractCharCount>
<pdfWordCount>3232</pdfWordCount>
<pdfCharCount>19133</pdfCharCount>
<pdfPageCount>5</pdfPageCount>
<abstractWordCount>96</abstractWordCount>
</qualityIndicators>
<title>Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>91</volume>
<publisherId>
<json:string>epl</json:string>
</publisherId>
<pages>
<total>5</total>
<last>5</last>
<first>1</first>
</pages>
<issn>
<json:string>0295-5075</json:string>
</issn>
<issue>6</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1286-4854</json:string>
</eissn>
<title>Europhysics Letters</title>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1209/0295-5075/91/62001</json:string>
</doi>
<id>CB1BC07DA6D480B8F967348F2E658CD7EC2D5439</id>
<score>0.24267104</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/CB1BC07DA6D480B8F967348F2E658CD7EC2D5439/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/CB1BC07DA6D480B8F967348F2E658CD7EC2D5439/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CB1BC07DA6D480B8F967348F2E658CD7EC2D5439/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>IOP Publishing Ltd</publisher>
<availability>
<p>Europhysics Letters Association</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
<author xml:id="author-1">
<persName>
<forename type="first">H.-C.</forename>
<surname>Wille</surname>
</persName>
<email>hans.christian.wille@desy.de</email>
<affiliation>Deutsches Elektronen-Synchrotron - D-22607 Hamburg, Germany, EU</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">R. P.</forename>
<surname>Hermann</surname>
</persName>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">I.</forename>
<surname>Sergueev</surname>
</persName>
<affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">U.</forename>
<surname>Pelzer</surname>
</persName>
<affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">A.</forename>
<surname>Mchel</surname>
</persName>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">T.</forename>
<surname>Claudio</surname>
</persName>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">J.</forename>
<surname>Peron</surname>
</persName>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">R.</forename>
<surname>Rffer</surname>
</persName>
<affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">A.</forename>
<surname>Said</surname>
</persName>
<affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</affiliation>
</author>
<author xml:id="author-10">
<persName>
<forename type="first">Yu. V.</forename>
<surname>Shvyd'ko</surname>
</persName>
<affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Europhysics Letters</title>
<title level="j" type="abbrev">EPL</title>
<idno type="pISSN">0295-5075</idno>
<idno type="eISSN">1286-4854</idno>
<imprint>
<publisher>IOP Publishing Ltd</publisher>
<date type="published" when="2010"></date>
<biblScope unit="volume">91</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="5">5</biblScope>
<biblScope unit="production">Printed in France</biblScope>
</imprint>
</monogr>
<idno type="istex">CB1BC07DA6D480B8F967348F2E658CD7EC2D5439</idno>
<idno type="DOI">10.1209/0295-5075/91/62001</idno>
<idno type="articleID">epl_12959</idno>
<idno type="articleNumber">62001</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12)ns and 35493.12(30)eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.</p>
</abstract>
<textClass>
<classCode scheme="">23.20.Lv</classCode>
<classCode scheme="">29.30.Kv</classCode>
<classCode scheme="">63.20.D-</classCode>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/CB1BC07DA6D480B8F967348F2E658CD7EC2D5439/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1"</istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_5_2.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="epl12959">
<article-metadata>
<jnl-data jnlid="epl">
<jnl-fullname>Europhysics Letters</jnl-fullname>
<jnl-abbreviation>EPL</jnl-abbreviation>
<jnl-shortname>EPL</jnl-shortname>
<jnl-issn>0295-5075</jnl-issn>
<jnl-coden>EULEEJ</jnl-coden>
<jnl-imprint></jnl-imprint>
<jnl-web-address>www.epljournal.org</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2010</year-publication>
<volume-number>91</volume-number>
</volume-data>
<issue-data>
<issue-number>6</issue-number>
<coverdate>September 2010</coverdate>
</issue-data>
<article-data>
<article-type type="letter" sort="regular"></article-type>
<type-number type="letter" numbering="article" artnum="62001">62001</type-number>
<article-number>epl_12959</article-number>
<first-page>1</first-page>
<last-page>5</last-page>
<length>5</length>
<pii></pii>
<doi>10.1209/0295-5075/91/62001</doi>
<copyright>Europhysics Letters Association</copyright>
<ccc></ccc>
<printed>Printed in France</printed>
</article-data>
</article-metadata>
<header>
<title-group>
<title>Nuclear forward and inelastic spectroscopy on
<sup>125</sup>
Te and Sb
<sub>2</sub>
<sup>125</sup>
Te
<sub>3</sub>
</title>
<short-title>Nuclear forward and inelastic spectroscopy on
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<sup>125</sup>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
</short-title>
<ej-title>Nuclear forward and inelastic spectroscopy on 125Te and Sb2125Te3</ej-title>
</title-group>
<author-group>
<author address="epl12959ad1" email="epl12959ea1">
<first-names>H.-C.</first-names>
<second-name>Wille</second-name>
</author>
<author address="epl12959ad2" second-address="epl12959ad3">
<first-names>R. P.</first-names>
<second-name>Hermann</second-name>
</author>
<author address="epl12959ad4">
<first-names>I.</first-names>
<second-name>Sergueev</second-name>
</author>
<author address="epl12959ad4">
<first-names>U.</first-names>
<second-name>Pelzer</second-name>
</author>
<author address="epl12959ad2" second-address="epl12959ad3">
<first-names>A.</first-names>
<second-name>Möchel</second-name>
</author>
<author address="epl12959ad2" second-address="epl12959ad3">
<first-names>T.</first-names>
<second-name>Claudio</second-name>
</author>
<author address="epl12959ad2">
<first-names>J.</first-names>
<second-name>Perßon</second-name>
</author>
<author address="epl12959ad4">
<first-names>R.</first-names>
<second-name>Rüffer</second-name>
</author>
<author address="epl12959ad5">
<first-names>A.</first-names>
<second-name>Said</second-name>
</author>
<author address="epl12959ad5">
<first-names>Yu. V.</first-names>
<second-name>Shvyd'ko</second-name>
</author>
<short-author-list>H.-C. Wille
<italic>et al</italic>
</short-author-list>
</author-group>
<address-group>
<address id="epl12959ad1" showid="yes">
<orgname>Deutsches Elektronen-Synchrotron</orgname>
- D-22607 Hamburg,
<country>Germany</country>
, EU</address>
<address id="epl12959ad2" showid="yes">
<orgname>Institut für Festkörperforschung</orgname>
, JCNS und JARA-FIT, Forschungszentrum Jülich GmbH D-52425 Jülich,
<country>Germany</country>
, EU</address>
<address id="epl12959ad3" showid="yes">Faculté des Sciences,
<orgname>Université de Liège</orgname>
- B-4000 Liège,
<country>Belgium</country>
, EU</address>
<address id="epl12959ad4" showid="yes">
<orgname>European Synchrotron Radiation Facility</orgname>
- F-38043 Grenoble Cedex,
<country>France</country>
, EU</address>
<address id="epl12959ad5" showid="yes">
<orgname>Argonne National Laboratory</orgname>
, Advanced Photon Source - Argonne, IL 60439,
<country>USA</country>
</address>
<e-address id="epl12959ea1">
<email mailto="hans.christian.wille@desy.de">hans.christian.wille@desy.de</email>
</e-address>
</address-group>
<history received="14 July 2010" accepted="6 September 2010" online="6 October 2010"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12) ns and 35493.12(30) eV, respectively. As applications, the nuclear inelastic spectrum in
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.</p>
</abstract>
</abstract-group>
<classifications>
<class-codes scheme="pacs">
<code>23.20.Lv</code>
<code>29.30.Kv</code>
<code>63.20.D-</code>
</class-codes>
</classifications>
</header>
<body refstyle="numeric">
<sec-level1 id="epl12959s1">
<heading>Introduction</heading>
<p indent="no">Tellurium is a constituent of several type of compounds that are currently attracting attention, notably many phase change materials used for rewriteable data storage devices [
<cite linkend="epl12959bib1">1</cite>
], many thermoelectric materials [
<cite linkend="epl12959bib2">2</cite>
], and more recently, iron-tellurium–based parent compounds of superconducting materials [
<cite linkend="epl12959bib3">3</cite>
,
<cite linkend="epl12959bib4">4</cite>
].</p>
<p>Mössbauer spectral studies on Te compounds have been performed since the early days of Mössbauer spectroscopy [
<cite linkend="epl12959bib5" range="epl12959bib5,epl12959bib6,epl12959bib7">5–7</cite>
]. This transition occurs between the ground state with spin parity
<inline-eqn>
<math-text>
<italic>I</italic>
<sub>
<italic>g</italic>
</sub>
=1/2+</math-text>
</inline-eqn>
and the first excited state with spin parity
<inline-eqn>
<math-text>
<italic>I</italic>
<sub>
<italic>e</italic>
</sub>
=3/2+</math-text>
</inline-eqn>
and the published [
<cite linkend="epl12959bib8">8</cite>
] energy
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>0</sub>
=35492.2(5) 
<upright>eV</upright>
</math-text>
</inline-eqn>
. The reported half life is
<inline-eqn>
<math-text>
<italic>t</italic>
<sub>1/2</sub>
=1.48(1) 
<upright>ns</upright>
</math-text>
</inline-eqn>
corresponding to a lifetime of
<inline-eqn>
<math-text>τ=2.14(1) 
<upright>ns</upright>
</math-text>
</inline-eqn>
 [
<cite linkend="epl12959bib9">9</cite>
], and the recoil energy is
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>
<italic>R</italic>
</sub>
=
<italic>E</italic>
<sub>γ</sub>
/2
<italic>m</italic>
<sub>
<upright>Te</upright>
</sub>
<italic>c</italic>
<sup>2</sup>
=5.41 
<upright>meV</upright>
</math-text>
</inline-eqn>
. The natural abundance of
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
is
<inline-eqn>
<math-text>6.99%</math-text>
</inline-eqn>
. The major limitations for Mössbauer spectroscopy comes from the narrow range of isomer shifts for the different oxidation states as compared to the natural linewidth of 5 mm/s, the significant source broadening, and a rather limited source half-life of
<inline-eqn>
<math-text>∼60</math-text>
</inline-eqn>
days [
<cite linkend="epl12959bib7">7</cite>
].
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
is thus an appealing isotope for attempting measurements using synchrotron radiation nuclear resonance scattering. Since the first nuclear resonant scattering experiment [
<cite linkend="epl12959bib10">10</cite>
] on
<inline-eqn>
<math-text>
<sup>57</sup>
<upright>Fe</upright>
</math-text>
</inline-eqn>
reported in 1985 and the first phonon measurements [
<cite linkend="epl12959bib11">11</cite>
,
<cite linkend="epl12959bib12">12</cite>
] reported in 1995, this field of research has been expanded to many Mössbauer isotopes [
<cite linkend="epl12959bib13">13</cite>
] and most recently [
<cite linkend="epl12959bib14" range="epl12959bib14,epl12959bib15,epl12959bib16">14–16</cite>
] to
<inline-eqn>
<math-text>
<sup>121</sup>
<upright>Sb</upright>
</math-text>
</inline-eqn>
, an isotope with a resonance energy and lifetime similar to
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
. The different nuclear resonant scattering techniques are applied for a wide variety of topics in natural sciences including magnetism, solid-state dynamics, phase transitions, geophysics, as well as biological and chemical studies [
<cite linkend="epl12959bib17">17</cite>
,
<cite linkend="epl12959bib18">18</cite>
]. Due to the high brilliance of third generation synchrotron radiation sources these techniques offer unique opportunities in application to nanomagnetism [
<cite linkend="epl12959bib19">19</cite>
], dynamical studies on nano systems [
<cite linkend="epl12959bib20">20</cite>
] and high pressure physics where a high flux of photons matching the resonance energy through a very small sample volume is mandatory [
<cite linkend="epl12959bib17">17</cite>
].</p>
<p>The nuclear scattering techniques put stringent requirements on the X-ray optics, and in particular, high-resolution monochromators (HRMs) are essential in order to achieve good resolution for phonon spectroscopy using nuclear inelastic scattering and, with some exceptions [
<cite linkend="epl12959bib21">21</cite>
,
<cite linkend="epl12959bib22">22</cite>
], to avoid the detector overload for nuclear forward scattering. In order to reach the
<inline-eqn>
<math-text>
<upright>meV</upright>
</math-text>
</inline-eqn>
resolution needed for the study of phonon excitations in a solid, a resolution of the monochromator
<inline-eqn>
<math-text>Δ
<italic>E</italic>
/
<italic>E</italic>
</math-text>
</inline-eqn>
of
<inline-eqn>
<math-text>10
<sup>−7</sup>
</math-text>
</inline-eqn>
or better is thus required for nuclear resonances with energy of a few tens of keV. Further, whereas for resonance energies
<inline-eqn>
<math-text><30 
<upright>keV</upright>
</math-text>
</inline-eqn>
, efficient multiple bounce Si HRMs have been developed and are widely used (see reviews [
<cite linkend="epl12959bib23">23</cite>
,
<cite linkend="epl12959bib24">24</cite>
]). In this energy range single bounce sapphire Bragg backscattering monochromators are at least equally efficient and above 30 keV backscattering provides a more efficient alternative with sufficient angular acceptance, higher reflectivity, and a free choice of X-ray energy due to a larger choice of reflections [
<cite linkend="epl12959bib24">24</cite>
,
<cite linkend="epl12959bib25">25</cite>
]. Bragg backscattering monochromatization from sapphire has first been used for nuclear resonant scattering on
<inline-eqn>
<math-text>
<sup>161</sup>
<upright>Dy</upright>
</math-text>
</inline-eqn>
at 25.61 keV [
<cite linkend="epl12959bib26">26</cite>
] and recently a single-crystal Bragg backscattering sapphire,
<inline-eqn>
<math-text>
<upright>Al</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
monochromator for
<inline-eqn>
<math-text>
<sup>121</sup>
<upright>Sb</upright>
</math-text>
</inline-eqn>
antimony at 37.13 keV has been developed [
<cite linkend="epl12959bib14">14</cite>
,
<cite linkend="epl12959bib16">16</cite>
].</p>
<p>Herein, we report on nuclear forward scattering measurements (NFS) on
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
in Te metal and nuclear inelastic scattering measurements (NIS) on
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
using the same monochromator at the
<inline-eqn></inline-eqn>
reflection in
<inline-eqn>
<math-text>
<upright>Al</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
. The 6.6 meV resolution achieved herein allows for studies of phonon properties with relaxed resolution, and opens the way for nuclear resonance spectroscopy on many interesting Te bearing compounds.</p>
</sec-level1>
<sec-level1 id="epl12959s2">
<heading>Experimental</heading>
<p indent="no">The experiments were performed in 16-bunch mode at the nuclear resonance station [
<cite linkend="epl12959bib27">27</cite>
] ID22N of the European Synchrotron Radiation Facility in Grenoble, France. In the experimental setup, see fig. 
<figref linkend="epl12959fig1">1</figref>
, the beam is first collimated by a Be compound refractive lense [
<cite linkend="epl12959bib28">28</cite>
] in order to reduce the vertical beam divergence to slightly less than
<inline-eqn>
<math-text>
<upright>rad</upright>
</math-text>
</inline-eqn>
and the vertical beam spot size on the sapphire to about
<inline-eqn>
<math-text>400μ
<upright>m</upright>
</math-text>
</inline-eqn>
. A double-crystal Si (
<inline-eqn>
<math-text>111</math-text>
</inline-eqn>
) high-heat-load monochromator then filters out a 7 eV bandwidth at 35.49 keV with a typical integrated flux of
<inline-eqn>
<math-text>3·10
<sup>11</sup>
</math-text>
</inline-eqn>
photons per second. The beam passes in the vicinity of the sample before reaching the high-resolution monochromator [
<cite linkend="epl12959bib14">14</cite>
], a sapphire crystal located in a temperature-controlled nitrogen gas flow cryostat mounted on a 2-circle goniometer. The beam that is backscattered towards the sample has a narrow bandwidth of a few meV.</p>
<figure id="epl12959fig1" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="18.0pc" printcolour="no" filename="images/epl12959fig1.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="images/epl12959fig1.jpg"></graphic-file>
</graphic>
<caption type="figure" id="epl12959fc1" label="Figure 1">
<p indent="no">Experimental arrangement of the Be lense, the double-crystal Si(111) high-heat-load monochromator, HHLM, the high-resolution monochromator, HRM, that consists of a temperature-controlled sapphire single crystal, the
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
-containing sample, S, and the Si APD X-ray detectors,
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NIS</upright>
</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NFS</upright>
</sub>
</math-text>
</inline-eqn>
, see text.</p>
</caption>
</figure>
<p>The beam transmitted through and scattered in forward direction by the sample is collected by the forward detector array D
<inline-eqn>
<math-text>
<sub>
<upright>NFS</upright>
</sub>
</math-text>
</inline-eqn>
. The nuclear fluorescence products from the phonon-assisted nuclear absorption and the electronically scattered radiation are collected in the detector
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NIS</upright>
</sub>
</math-text>
</inline-eqn>
located in transverse direction. The detectors are comprised of avalanche photodiode X-ray detectors [
<cite linkend="epl12959bib29">29</cite>
] with a time resolution of 0.2 ns (NFS) and 1 ns (NIS) respectively. This permits the discrimination of the delayed nuclear resonant photons from the prompt electronically scattered photons impinging on the sample. The 0.2 ns time resolution of the NFS detector combined with fast discriminators allows signal collection as soon as 2 ns after the prompt synchrotron radiation, whereas signal collection can start only after about 6 ns in the NIS channel, see fig. 
<figref linkend="epl12959fig2">2</figref>
.</p>
<figure id="epl12959fig2" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="18.9pc" printcolour="no" filename="images/epl12959fig2.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="images/epl12959fig2.jpg"></graphic-file>
</graphic>
<caption type="figure" id="epl12959fc2" label="Figure 2">
<p indent="no">Elemental Te time spectrum in the NIS channel, filled symbols, and fitted using an exponential decay plus background, dashed line. Elemental Te NFS time spectrum, at
<inline-eqn>
<math-text>
<italic>T</italic>
=25 
<upright>K</upright>
</math-text>
</inline-eqn>
, open symbols, the fit with quadrupole interaction and thickness broadening starting at 4 ns, solid line, and the quadrupole interaction only model, dot-dashed line, see text.</p>
</caption>
</figure>
<p>The same sapphire-based monochromator has been succesfully introduced [
<cite linkend="epl12959bib14">14</cite>
,
<cite linkend="epl12959bib16">16</cite>
] for nuclear resonant scattering on
<inline-eqn>
<math-text>
<sup>121</sup>
<upright>Sb</upright>
</math-text>
</inline-eqn>
. In the present experiment the monochromatisation [
<cite linkend="epl12959bib24">24</cite>
] is obtained via diffraction by the planes (
<inline-eqn></inline-eqn>
) of a sapphire crystal that fulfill the Bragg backscattering condition in the desired energy region around the
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
resonance energy,
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
. In order to separate the direct and backscattered beam, a glancing angle of
<inline-eqn>
<math-text>89.90(5)°</math-text>
</inline-eqn>
was used, sufficiently large to retain an angular acceptance
<inline-eqn>
<math-text>⩾6.5 μ
<upright>rad</upright>
</math-text>
</inline-eqn>
matching the full beam divergence [
<cite linkend="epl12959bib24">24</cite>
]. The energy of the backscattered beam is tuned by scanning the sapphire temperature around the estimated temperature of 214 K corresponding to
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
for this reflection. The sapphire thermal-expansion coefficient at
<inline-eqn>
<math-text>
<italic>T</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
yields [
<cite linkend="epl12959bib30">30</cite>
] a linear energy variation of
<inline-eqn>
<math-text>−114 
<upright>meV</upright>
/
<upright>K</upright>
</math-text>
</inline-eqn>
. A temperature controller with a mK relative accuracy is used. The absolute accuracy of the crystal temperature is however limited by the X-ray heat load and by the temperature gradient between the sapphire and the sensor, a platinum resistor located in the nitrogen gas flowing around the sapphire.</p>
<p>The polycristalline Te metal and
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
samples were enriched in
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
to
<inline-eqn>
<math-text>95%</math-text>
</inline-eqn>
. In order to maximize the Lamb-Mössbauer factor for NFS and to minimize multiphonon scattering for NIS, the measurements were carried out with the samples at 25 K. Data evaluation of the NFS and NIS data was carried out using the programs MOTIF [
<cite linkend="epl12959bib31">31</cite>
] and DOS [
<cite linkend="epl12959bib32">32</cite>
], respectively. We also measured the
<inline-eqn>
<math-text>
<sup>121</sup>
<upright>Sb</upright>
</math-text>
</inline-eqn>
NIS in
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
using the (
<inline-eqn></inline-eqn>
) reflection, similarly as in ref. [
<cite linkend="epl12959bib16">16</cite>
], and extracted the Sb specific DOS; the resolution of the latter measurement is
<inline-eqn>
<math-text>∼3 
<upright>meV</upright>
</math-text>
</inline-eqn>
.</p>
</sec-level1>
<sec-level1 id="epl12959s3">
<heading>Results and discussion</heading>
<p indent="no">The energy of the
<inline-eqn></inline-eqn>
sapphire reflection matches the
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
nuclear resonant energy at
<inline-eqn>
<math-text>
<italic>T</italic>
<sub>0</sub>
=206(3) 
<upright>K</upright>
</math-text>
</inline-eqn>
,
<italic>i.e.</italic>
8 K lower than expected. The corresponding
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
nuclear resonance energy of 35.49312(30) keV is obtained from the sapphire lattice constants [
<cite linkend="epl12959bib30">30</cite>
],
<italic>i.e.</italic>
0.9 eV larger than previously published [
<cite linkend="epl12959bib8">8</cite>
].</p>
<p>The time spectra in
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NFS</upright>
</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NIS</upright>
</sub>
</math-text>
</inline-eqn>
correspond to the coherent scattering that reveals the hyperfine interactions and the simple incoherent exponential decay of the
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
excited state, respectively, see fig. 
<figref linkend="epl12959fig2">2</figref>
. From the incoherent decay measured by
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NIS</upright>
</sub>
</math-text>
</inline-eqn>
, the natural lifetime
<inline-eqn>
<math-text>τ=2.131(12) 
<upright>ns</upright>
</math-text>
</inline-eqn>
of the nuclear transition is obtained, in excellent agreement with ref. [
<cite linkend="epl12959bib9">9</cite>
]. The fitting of the intensity is done between
<inline-eqn>
<math-text>
<italic>t</italic>
=8</math-text>
</inline-eqn>
and 30 ns with the function
<inline-eqn>
<math-text>
<italic>I</italic>
(
<italic>t</italic>
)=
<italic>I</italic>
(0)·
<upright>exp</upright>
(
<italic>t</italic>
/τ)+
<italic>b</italic>
</math-text>
</inline-eqn>
, where
<inline-eqn>
<math-text>
<italic>b</italic>
</math-text>
</inline-eqn>
is the background. The measured
<inline-eqn>
<math-text>τ</math-text>
</inline-eqn>
yields a natural linewidth of the excited state
<inline-eqn>
<math-text>γ
<sub>0</sub>
=
<italic></italic>
/τ=309(2) 
<upright>neV</upright>
</math-text>
</inline-eqn>
.</p>
<p>The coherent nuclear forward scattering by elemental
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
reveals a quadrupole interaction of
<inline-eqn>
<math-text>2.96(10) γ
<sub>0</sub>
</math-text>
</inline-eqn>
, or 7.7(2) mm/s in Mössbauer velocity units in good agreement with early reports of 7.60(5) mm/s from Mössbauer spectroscopy [
<cite linkend="epl12959bib33">33</cite>
,
<cite linkend="epl12959bib34">34</cite>
]. The sample was chosen to have a maximum integrated intensity and had a large thickness along the beam. As a result, hybrid beats [
<cite linkend="epl12959bib35">35</cite>
] appear in the spectrum of the nuclear forward scattering due to the interference of beats due to hyperfine interactions and due to multiple scattering. Further, thickness distribution smoothing out these beats resulted in this rather simple shape of the spectrum which nevertheless, requires taking into account the hybrid beats for the fit. In case measurements of the coherent nuclear scattering is desired, thin samples can be used which allow one to measure the hyperfine interactions with better precision. Note that carrying out NFS measurements might be especially useful for Te compounds as source broadening, a frequent problem for Mössbauer sources for
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
spectroscopy [
<cite linkend="epl12959bib7">7</cite>
], is eliminated in this method. In contrast to Mössbauer spectral measurements for which the best possible resolution is
<inline-eqn>
<math-text>⩾2γ
<sub>0</sub>
</math-text>
</inline-eqn>
it is
<inline-eqn>
<math-text>γ
<sub>0</sub>
</math-text>
</inline-eqn>
for NFS.</p>
<p>The time-integrated energy dependence of the intensities in
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NFS</upright>
</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>D</upright>
<sub>
<upright>NIS</upright>
</sub>
</math-text>
</inline-eqn>
reveals the instrumental resolution function and the phonon-assisted nuclear inelastic scattering, respectively. The dependence of the nuclear forward and nuclear inelastic scattering intensities of
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
upon the difference
<inline-eqn>
<math-text>
<italic>E</italic>
<italic>E</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
between the photon energy,
<inline-eqn>
<math-text>
<italic>E</italic>
</math-text>
</inline-eqn>
, and the nuclear resonant energy,
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
, is shown in fig. 
<figref linkend="epl12959fig3">3</figref>
. The width of the instrumental functions was 6.6 meV, corresponding to a relative energy resolution of
<inline-eqn>
<math-text>2.1·10
<sup>−7</sup>
</math-text>
</inline-eqn>
, somewhat larger than the 4.5 meV bandwidth for earlier
<inline-eqn>
<math-text>
<sup>121</sup>
<upright>Sb</upright>
</math-text>
</inline-eqn>
measurements [
<cite linkend="epl12959bib16">16</cite>
]. This resolution is much larger than the theoretical value of 0.2 meV. The first reason could be related to the crystal quality. A resolution of 0.2 meV at 35.4 keV requires
<inline-eqn>
<math-text>2·10
<sup>8</sup>
</math-text>
</inline-eqn>
perfectly parallel reflecting planes which corresponds to about 3 mm thickness of a dislocation free crystal. As reported from topography studies [
<cite linkend="epl12959bib36">36</cite>
], the quality of available sapphire crystals is in general nowadays much worse than this requirement. The second reason could be the temperature gradient in the crystal over the sapphire thickness due to heat load from the impinging X-ray beam. A temperature gradient of 10 mK would lead to a broadening of 1 meV. The high flux, even after the high-heat-load monochromator, in combination with the good but finite thermal conductivity of sapphire at about 206 K could therefore result in a broadening in the meV energy range. Further studies for the reasons of the broadening and the developement of measures to improve the energy resolution are ongoing.</p>
<figure id="epl12959fig3" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="17.9pc" printcolour="no" filename="images/epl12959fig3.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="images/epl12959fig3.jpg"></graphic-file>
</graphic>
<caption type="figure" id="epl12959fc3" label="Figure 3">
<p indent="no">The count rates in nuclear forward, filled symbols, and nuclear inelastic scattering, open symbols, for
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
at 25 K as a function of the relative energy. The corresponding change in the sapphire crystal temperature relative to
<inline-eqn>
<math-text>
<italic>T</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
is indicated in the upper scale.</p>
</caption>
</figure>
<p>Because the
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
resonance recoil energy of 5.41 meV is rather large compared to the Debye energy of Te of 13.8 meV [
<cite linkend="epl12959bib37">37</cite>
], the multiphonon contribution to the NIS, which is proportional to the ratio of the recoil and the Debye energy, is also rather large compared to other Mössbauer isotopes like
<inline-eqn>
<math-text>
<sup>57</sup>
<upright>Fe</upright>
</math-text>
</inline-eqn>
or
<inline-eqn>
<math-text>
<sup>119</sup>
<upright>Sn</upright>
</math-text>
</inline-eqn>
. This holds also for low sample temperatures. As a consequence, the elastic peak in the NIS spectrum can be smaller than the strongest phonon contributions, and special care must be taken in order to extract the density of phonon states (DOS). In
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
the Lamb-Mössbauer factors are
<inline-eqn>
<math-text>
<italic>f</italic>
<sub>
<sup>125</sup>
<upright>Te</upright>
</sub>
=0.52(5)</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>f</italic>
<sub>
<sup>121</sup>
<upright>Sb</upright>
</sub>
=0.45(5)</math-text>
</inline-eqn>
at 25 K. Consequently,
<inline-eqn>
<math-text>∼50%</math-text>
</inline-eqn>
of the spectrum corresponds to multiphonon contributions. The extracted DOS, after elimination of the multiphonons and background [
<cite linkend="epl12959bib32">32</cite>
,
<cite linkend="epl12959bib38">38</cite>
], are shown in fig. 
<figref linkend="epl12959fig4">4</figref>
.</p>
<figure id="epl12959fig4" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="18.0pc" printcolour="no" filename="images/epl12959fig4.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="images/epl12959fig4.jpg"></graphic-file>
</graphic>
<caption type="figure" id="epl12959fc4" label="Figure 4">
<p indent="no">Comparison of the partial DOS of Te and Sb in
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<sup>125</sup>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
obtained from NIS, normalized to 3 and 2, filled and open squares respectively, and their sum weighted by the neutron scattering cross-sections, filled circles, with the DOS obtained from inelastic neutron scattering [
<cite linkend="epl12959bib42">42</cite>
], normalized to 5, open circles. Calculated [
<cite linkend="epl12959bib43">43</cite>
]
<inline-eqn>
<math-text>Γ</math-text>
</inline-eqn>
-point phonon mode energies and symmetries are indicated by the labeled tics.</p>
</caption>
</figure>
<p>The large recoil energy prevents direct measurements of the phonon DOS at higher temperatures, because broad multiphonon contributions start to wash out the one-phonon term when the sample temperature is similar to the Debye temperature. However, using the sum rules as outlined by Lipkin [
<cite linkend="epl12959bib39">39</cite>
,
<cite linkend="epl12959bib40">40</cite>
] it is in principle still possible to obtain a limited set of information, such as force constants, even at higher temperature. Nuclear inelastic scattering appears thus as a promising complementary technique to inelastic neutron scattering for force constant measurements, which have recently attracted interest in several tellurides [
<cite linkend="epl12959bib41">41</cite>
].</p>
<p>By comparing the Te element specific DOS obtained herein with the by inelastic neutron scattering DOS [
<cite linkend="epl12959bib42">42</cite>
], we can identify the peaks in the neutron data at 12.8 meV to be essentially related to Te vibrational modes, whereas the peak at 16.5 meV has a large Sb contribution. This attribution is in agreement with a recent report [
<cite linkend="epl12959bib43">43</cite>
], which indicates that at
<inline-eqn>
<math-text>∼100 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
, the
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>
<italic>u</italic>
</sub>
(3)</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>A</italic>
<sub>2
<italic>u</italic>
</sub>
(2)</math-text>
</inline-eqn>
modes are essentially Te modes, and
<inline-eqn>
<math-text>
<italic>E</italic>
<sub>
<italic>g</italic>
</sub>
(2)</math-text>
</inline-eqn>
involves equally Sb and Te, whereas above
<inline-eqn>
<math-text>130 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
the
<inline-eqn>
<math-text>
<italic>A</italic>
<sub>2
<italic>u</italic>
</sub>
(3)</math-text>
</inline-eqn>
<inline-eqn>
<math-text>
<italic>A</italic>
<sub>1
<italic>g</italic>
</sub>
(2)</math-text>
</inline-eqn>
modes have large Sb contributions.</p>
</sec-level1>
<sec-level1 id="epl12959s4">
<heading>Conclusion</heading>
<p indent="no">Nuclear forward and nuclear inelastic scattering measurements on
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
have been demonstrated utilizing a high-resolution sapphire Bragg backscattering monochromator. The resonace energy has been determined to be 35.49312(30) keV. From the inelastic spectrum the natural lifetime and linewidth of the nuclear transition were determined to be 2.131(12) ns and 309(2) neV, respectively. From the forward spectrum the quadrupole splitting in elemental Te was determined to be 2.96(10)
<inline-eqn>
<math-text>γ
<sub>0</sub>
</math-text>
</inline-eqn>
. Nuclear inelastic scattering spectra of Te and Sb in
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
have been measured and the density of phonon states has been derived. Although these measurements still have a relaxed 6.6 meV resolution, they demonstrated the feasibility of nuclear scattering techniques on
<inline-eqn>
<math-text>
<sup>125</sup>
<upright>Te</upright>
</math-text>
</inline-eqn>
. This opens the field for studies on the electronical, magnetic and dynamical properties of Te compounds like thermoelectrics or superconductors. Next steps include improvement of the resolution and application to other materials, such as
<inline-eqn>
<math-text>
<upright>GeSb</upright>
<sub>2</sub>
<upright>Te</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
phase change materials.</p>
</sec-level1>
<acknowledgment>
<heading>Acknowledgments</heading>
<p indent="no">The authors acknowledge the European Synchrotron Radiation Facility for provision of the synchrotron radiation facilities at beamline ID22N,
<smallcap>Th. Descheaux-Beaume Dang</smallcap>
for the developement of the forward detector electronics and
<smallcap>A. I. Chumakov</smallcap>
for helpful discussions. RH acknowledges support from the Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz-University Young Investigator Group ``Lattice Dynamic in Emerging Functional Materials''.</p>
</acknowledgment>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="numeric">
<journal-ref id="epl12959bib1" num="1">
<authors>
<au>
<second-name>Lencer</second-name>
<first-names>D.</first-names>
</au>
<au>
<second-name>Salinga</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Grabowski</second-name>
<first-names>B.</first-names>
</au>
<au>
<second-name>Hickel</second-name>
<first-names>T.</first-names>
</au>
<au>
<second-name>Neugebauer</second-name>
<first-names>J.</first-names>
</au>
<au>
<second-name>Wuttig</second-name>
<first-names>M.</first-names>
</au>
</authors>
<year>2008</year>
<jnl-title>Nat. Mater.</jnl-title>
<volume>7</volume>
<pages>972</pages>
</journal-ref>
<journal-ref id="epl12959bib2" num="2">
<authors>
<au>
<second-name>Snyder</second-name>
<first-names>G. J.</first-names>
</au>
<au>
<second-name>Toberer</second-name>
<first-names>E. S.</first-names>
</au>
</authors>
<year>2008</year>
<jnl-title>Nat. Mater.</jnl-title>
<volume>7</volume>
<pages>105</pages>
</journal-ref>
<journal-ref id="epl12959bib3" num="3">
<authors>
<au>
<second-name>Hanaguri</second-name>
<first-names>T.</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2010</year>
<jnl-title>Science</jnl-title>
<volume>328</volume>
<pages>474</pages>
</journal-ref>
<journal-ref id="epl12959bib4" num="4">
<authors>
<au>
<second-name>Subedi</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Zhang</second-name>
<first-names>L.</first-names>
</au>
<au>
<second-name>Singh</second-name>
<first-names>D. J.</first-names>
</au>
<au>
<second-name>Du</second-name>
<first-names>M. H.</first-names>
</au>
</authors>
<year>2008</year>
<jnl-title>Phys. Rev. B</jnl-title>
<volume>78</volume>
<pages>134514</pages>
</journal-ref>
<journal-ref id="epl12959bib5" num="5">
<authors>
<au>
<second-name>Hein</second-name>
<first-names>P. Z.</first-names>
</au>
<au>
<second-name>Shapiro</second-name>
<first-names>V. G.</first-names>
</au>
<au>
<second-name>Shpinel</second-name>
<first-names>V. S.</first-names>
</au>
</authors>
<year>1962</year>
<jnl-title>Sov. Phys. JETP</jnl-title>
<volume>15</volume>
<pages>489</pages>
</journal-ref>
<journal-ref id="epl12959bib6" num="6">
<authors>
<au>
<second-name>Shikazono</second-name>
<first-names>N.</first-names>
</au>
<au>
<second-name>Shorji</second-name>
<first-names>T.</first-names>
</au>
<au>
<second-name>Takekoshi</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Tseng</second-name>
<first-names>P.</first-names>
</au>
</authors>
<year>1962</year>
<jnl-title>J. Phys. Soc. Jpn.</jnl-title>
<volume>17</volume>
<pages>1205</pages>
</journal-ref>
<book-ref id="epl12959bib7" num="7">
<authors>
<au>
<second-name>Long</second-name>
<first-names>G. J.
<upright>(Editor)</upright>
</first-names>
</au>
</authors>
<year>1987</year>
<book-title>Tellurium-125 Mössbauer spectroscopy,
<upright>in</upright>
Mössbauer Spectroscopy Applied to Inorganic Chemistry</book-title>
<publication>
<place>New York London</place>
<publisher>Plenum Press</publisher>
</publication>
</book-ref>
<journal-ref id="epl12959bib8" num="8">
<authors>
<au>
<second-name>Katakura</second-name>
<first-names>J.</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Nucl. Data Sheets</jnl-title>
<volume>86</volume>
<pages>955</pages>
</journal-ref>
<journal-ref id="epl12959bib9" num="9">
<authors>
<au>
<second-name>Attallah</second-name>
<first-names>F.</first-names>
</au>
<au>
<second-name>Aiche</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Chemin</second-name>
<first-names>J. F.</first-names>
</au>
<au>
<second-name>Scheurer</second-name>
<first-names>J. N.</first-names>
</au>
<au>
<second-name>Meyerhof</second-name>
<first-names>W. E.</first-names>
</au>
<au>
<second-name>Grandin</second-name>
<first-names>J. P.</first-names>
</au>
<au>
<second-name>Aguer</second-name>
<first-names>P.</first-names>
</au>
<au>
<second-name>Bogaert</second-name>
<first-names>G.</first-names>
</au>
<au>
<second-name>Kiener</second-name>
<first-names>J.</first-names>
</au>
<au>
<second-name>Lefebvre</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Thibaud</second-name>
<first-names>J. P.</first-names>
</au>
<au>
<second-name>Grunberg</second-name>
<first-names>C.</first-names>
</au>
</authors>
<year>1995</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>75</volume>
<pages>1715</pages>
</journal-ref>
<journal-ref id="epl12959bib10" num="10">
<authors>
<au>
<second-name>Gerdau</second-name>
<first-names>E.</first-names>
</au>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Winkler</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Tolksdorf</second-name>
<first-names>W.</first-names>
</au>
<au>
<second-name>Klages</second-name>
<first-names>C. P.</first-names>
</au>
<au>
<second-name>Hannon</second-name>
<first-names>J. P.</first-names>
</au>
</authors>
<year>1985</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>54</volume>
<pages>835</pages>
</journal-ref>
<journal-ref id="epl12959bib11" num="11">
<authors>
<au>
<second-name>Seto</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Yoda</second-name>
<first-names>Y.</first-names>
</au>
<au>
<second-name>Kikuta</second-name>
<first-names>S.</first-names>
</au>
<au>
<second-name>Zhang</second-name>
<first-names>X. W.</first-names>
</au>
<au>
<second-name>Ando</second-name>
<first-names>M.</first-names>
</au>
</authors>
<year>1995</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>74</volume>
<pages>3828</pages>
</journal-ref>
<journal-ref id="epl12959bib12" num="12">
<authors>
<au>
<second-name>Sturhahn</second-name>
<first-names>W.</first-names>
</au>
<au>
<second-name>Toellner</second-name>
<first-names>T. S.</first-names>
</au>
<au>
<second-name>Alp</second-name>
<first-names>E. E.</first-names>
</au>
<au>
<second-name>Zhang</second-name>
<first-names>X.</first-names>
</au>
<au>
<second-name>Ando</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Yoda</second-name>
<first-names>Y.</first-names>
</au>
<au>
<second-name>Kikuta</second-name>
<first-names>S.</first-names>
</au>
<au>
<second-name>Seto</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Kimball</second-name>
<first-names>C. W.</first-names>
</au>
<au>
<second-name>Dabrowski</second-name>
<first-names>B.</first-names>
</au>
</authors>
<year>1995</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>74</volume>
<pages>3832</pages>
</journal-ref>
<journal-ref id="epl12959bib13" num="13">
<authors>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
<au>
<second-name>Chumakov</second-name>
<first-names>A. I.</first-names>
</au>
<au>
<second-name>Alp</second-name>
<first-names>E. E.</first-names>
</au>
<au>
<second-name>Sturhahn</second-name>
<first-names>W.</first-names>
</au>
<au>
<second-name>Baron</second-name>
<first-names>A. Q. R.</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>123/124</volume>
<pages>611</pages>
</journal-ref>
<journal-ref id="epl12959bib14" num="14">
<authors>
<au>
<second-name>Wille</second-name>
<first-names>H.-C.</first-names>
</au>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
<au>
<second-name>Alp</second-name>
<first-names>E. E.</first-names>
</au>
<au>
<second-name>Rüter</second-name>
<first-names>H. D.</first-names>
</au>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
<au>
<second-name>Sergueev</second-name>
<first-names>I.</first-names>
</au>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Barla</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Sanchez</second-name>
<first-names>J. P.</first-names>
</au>
</authors>
<year>2006</year>
<jnl-title>Europhys. Lett.</jnl-title>
<volume>74</volume>
<pages>170</pages>
</journal-ref>
<journal-ref id="epl12959bib15" num="15">
<authors>
<au>
<second-name>Tsutsui</second-name>
<first-names>S.</first-names>
</au>
<au>
<second-name>Yoda</second-name>
<first-names>Y.</first-names>
</au>
<au>
<second-name>Kobayashi</second-name>
<first-names>H.</first-names>
</au>
</authors>
<year>2007</year>
<jnl-title>J. Phys. Soc. Jpn.</jnl-title>
<volume>76</volume>
<pages>065003</pages>
</journal-ref>
<journal-ref id="epl12959bib16" num="16">
<authors>
<au>
<second-name>Wille</second-name>
<first-names>H.-C.</first-names>
</au>
<au>
<second-name>Hermann</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Sergueev</second-name>
<first-names>I.</first-names>
</au>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
<au>
<second-name>van der Linden</second-name>
<first-names>P.</first-names>
</au>
<au>
<second-name>Sales</second-name>
<first-names>B.</first-names>
</au>
<au>
<second-name>Grandjean</second-name>
<first-names>F.</first-names>
</au>
<au>
<second-name>Long</second-name>
<first-names>G. J.</first-names>
</au>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
</authors>
<year>2007</year>
<jnl-title>Phys. Rev. B</jnl-title>
<volume>76</volume>
<pages>140301(R)</pages>
</journal-ref>
<misc-ref id="epl12959bib17" num="17">
<authors>
<au>
<second-name>de Waard</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Gerdau</second-name>
<first-names>E. E.
<upright>(Editors)</upright>
</first-names>
</au>
</authors>
<misc-text>
<italic>Nuclear Resonant Scattering of Synchrotron Radiation</italic>
, in
<italic>Hyperfine Interact.</italic>
<bold>123-125</bold>
(1999/2000)</misc-text>
</misc-ref>
<book-ref id="epl12959bib18" num="18">
<authors>
<au>
<second-name>Röhlsberger</second-name>
<first-names>R.</first-names>
</au>
</authors>
<year>1965</year>
<book-title>Nuclear Solid State Physics with Synchrotron Radiation, Springer Tracts Mod. Phys.,
<upright>Vol. 
<bold>208</bold>
</upright>
</book-title>
<publication>
<place>Berlin</place>
<publisher>Springer Verlag</publisher>
</publication>
</book-ref>
<journal-ref id="epl12959bib19" num="19">
<authors>
<au>
<second-name>Röhlsberger</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Bansmann</second-name>
<first-names>J.</first-names>
</au>
<au>
<second-name>Senz</second-name>
<first-names>V.</first-names>
</au>
<au>
<second-name>Jonas</second-name>
<first-names>K. L.</first-names>
</au>
<au>
<second-name>Bettac</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Meiwes-Broer</second-name>
<first-names>K. H.</first-names>
</au>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
</authors>
<year>2003</year>
<jnl-title>Phys. Rev. B</jnl-title>
<volume>67</volume>
<pages>245412</pages>
</journal-ref>
<journal-ref id="epl12959bib20" num="20">
<authors>
<au>
<second-name>Stankov</second-name>
<first-names>S.</first-names>
</au>
<au>
<second-name>Yue</second-name>
<first-names>Y. Z.</first-names>
</au>
<au>
<second-name>Miglierini</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Sepiol</second-name>
<first-names>B.</first-names>
</au>
<au>
<second-name>Sergueev</second-name>
<first-names>I.</first-names>
</au>
<au>
<second-name>Chumakov</second-name>
<first-names>A. I.</first-names>
</au>
<au>
<second-name>Hu</second-name>
<first-names>L.</first-names>
</au>
<au>
<second-name>Svec</second-name>
<first-names>P.</first-names>
</au>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
</authors>
<year>2008</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>100</volume>
<pages>235503</pages>
</journal-ref>
<journal-ref id="epl12959bib21" num="21">
<authors>
<au>
<second-name>Röhlsberger</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Toellner</second-name>
<first-names>T.</first-names>
</au>
<au>
<second-name>Sturhahn</second-name>
<first-names>W.</first-names>
</au>
<au>
<second-name>Quast</second-name>
<first-names>K.</first-names>
</au>
<au>
<second-name>Alp</second-name>
<first-names>E.</first-names>
</au>
<au>
<second-name>Bernhard</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Burkel</second-name>
<first-names>E.</first-names>
</au>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
<au>
<second-name>Gerdau</second-name>
<first-names>E.</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>84</volume>
<pages>1007</pages>
</journal-ref>
<journal-ref id="epl12959bib22" num="22">
<authors>
<au>
<second-name>Sergueev</second-name>
<first-names>I.</first-names>
</au>
<au>
<second-name>Chumakov</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Beaume-Dang</second-name>
<first-names>T. D.</first-names>
</au>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Strohm</second-name>
<first-names>C.</first-names>
</au>
<au>
<second-name>van Bürck</second-name>
<first-names>U.</first-names>
</au>
</authors>
<year>2007</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>99</volume>
<pages>097601</pages>
</journal-ref>
<journal-ref id="epl12959bib23" num="23">
<authors>
<au>
<second-name>Toellner</second-name>
<first-names>T. S.</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>125</volume>
<pages>3</pages>
</journal-ref>
<book-ref id="epl12959bib24" num="24">
<authors>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y.</first-names>
</au>
</authors>
<year>2004</year>
<book-title>X-Ray Optics, Springer Series in Optical Sciences,
<upright>Vol.
<bold>98</bold>
</upright>
</book-title>
<publication>
<place></place>
<publisher>Springer</publisher>
</publication>
</book-ref>
<journal-ref id="epl12959bib25" num="25">
<authors>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
<au>
<second-name>Gerdau</second-name>
<first-names>E.</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>123/124</volume>
<pages>741</pages>
</journal-ref>
<journal-ref id="epl12959bib26" num="26">
<authors>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
<au>
<second-name>Gerken</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Franz</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Lucht</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Gerdau</second-name>
<first-names>E.</first-names>
</au>
</authors>
<year>2001</year>
<jnl-title>Europhys. Lett.</jnl-title>
<volume>56</volume>
<pages>39</pages>
</journal-ref>
<journal-ref id="epl12959bib27" num="27">
<authors>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Chumakov</second-name>
<first-names>A. I.</first-names>
</au>
</authors>
<year>1996</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>97/98</volume>
<pages>589</pages>
</journal-ref>
<journal-ref id="epl12959bib28" num="28">
<authors>
<au>
<second-name>Chumakov</second-name>
<first-names>A. I.</first-names>
</au>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
<au>
<second-name>Barla</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Thiess</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Asthalter</second-name>
<first-names>T.</first-names>
</au>
<au>
<second-name>Doyle</second-name>
<first-names>B.</first-names>
</au>
<au>
<second-name>Snigirev</second-name>
<first-names>A.</first-names>
</au>
<au>
<second-name>Baron</second-name>
<first-names>A. Q. R.</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>77</volume>
<pages>31</pages>
</journal-ref>
<journal-ref id="epl12959bib29" num="29">
<authors>
<au>
<second-name>Baron</second-name>
<first-names>A. Q. R.</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>125</volume>
<pages>29</pages>
</journal-ref>
<journal-ref id="epl12959bib30" num="30">
<authors>
<au>
<second-name>Lucht</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Lerche</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Wille</second-name>
<first-names>H.-C.</first-names>
</au>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
<au>
<second-name>Rüter</second-name>
<first-names>H. D.</first-names>
</au>
<au>
<second-name>Gerdau</second-name>
<first-names>E.</first-names>
</au>
<au>
<second-name>Becker</second-name>
<first-names>P.</first-names>
</au>
</authors>
<year>2003</year>
<jnl-title>J. Appl. Crystallogr.</jnl-title>
<volume>36</volume>
<pages>1075</pages>
</journal-ref>
<journal-ref id="epl12959bib31" num="31">
<authors>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Phys. Rev. B</jnl-title>
<volume>59</volume>
<pages>9132</pages>
</journal-ref>
<journal-ref id="epl12959bib32" num="32">
<authors>
<au>
<second-name>Kohn</second-name>
<first-names>V. G.</first-names>
</au>
<au>
<second-name>Chumakov</second-name>
<first-names>A. I.</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>125</volume>
<pages>205</pages>
</journal-ref>
<journal-ref id="epl12959bib33" num="33">
<authors>
<au>
<second-name>Vulliet</second-name>
<first-names>P.</first-names>
</au>
<au>
<second-name>Sanchez</second-name>
<first-names>J. P.</first-names>
</au>
</authors>
<year>1998</year>
<jnl-title>Phys. Rev. B</jnl-title>
<volume>58</volume>
<pages>171</pages>
</journal-ref>
<journal-ref id="epl12959bib34" num="34">
<authors>
<au>
<second-name>Violet</second-name>
<first-names>C.</first-names>
</au>
<au>
<second-name>Booth</second-name>
<first-names>R.</first-names>
</au>
</authors>
<year>1966</year>
<jnl-title>Phys. Rev.</jnl-title>
<volume>144</volume>
<pages>225</pages>
</journal-ref>
<journal-ref id="epl12959bib35" num="35">
<authors>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
<au>
<second-name>van Bürck</second-name>
<first-names>U.</first-names>
</au>
<au>
<second-name>Potzel</second-name>
<first-names>W.</first-names>
</au>
<au>
<second-name>Schindelmann</second-name>
<first-names>P.</first-names>
</au>
<au>
<second-name>Gerdau</second-name>
<first-names>E.</first-names>
</au>
<au>
<second-name>Leupold</second-name>
<first-names>O.</first-names>
</au>
<au>
<second-name>Metge</second-name>
<first-names>J.</first-names>
</au>
<au>
<second-name>Rüter</second-name>
<first-names>H. D.</first-names>
</au>
<au>
<second-name>Smirnov</second-name>
<first-names>G. V.</first-names>
</au>
</authors>
<year>1998</year>
<jnl-title>Phys. Rev. B</jnl-title>
<volume>57</volume>
<pages>3552</pages>
</journal-ref>
<journal-ref id="epl12959bib36" num="36">
<authors>
<au>
<second-name>Chen</second-name>
<first-names>W. M.</first-names>
</au>
<au>
<second-name>McNally</second-name>
<first-names>P. J.</first-names>
</au>
<au>
<second-name>Shvyd'ko</second-name>
<first-names>Y. V.</first-names>
</au>
<au>
<second-name>Tuomi</second-name>
<first-names>T.</first-names>
</au>
<au>
<second-name>Lerche</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Danilewsky</second-name>
<first-names>A. N.</first-names>
</au>
<au>
<second-name>Kanatharana</second-name>
<first-names>J.</first-names>
</au>
<au>
<second-name>Lowney</second-name>
<first-names>D.</first-names>
</au>
<au>
<second-name>O'Hare</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Knuuttila</second-name>
<first-names>L.</first-names>
</au>
<au>
<second-name>Riikonen</second-name>
<first-names>J.</first-names>
</au>
<au>
<second-name>Rantamäki</second-name>
<first-names>R.</first-names>
</au>
</authors>
<year>2001</year>
<jnl-title>Phys. Status Solidi (a)</jnl-title>
<volume>186</volume>
<pages>365</pages>
</journal-ref>
<journal-ref id="epl12959bib37" num="37">
<authors>
<au>
<second-name>Zhdandov</second-name>
<first-names>V. M.</first-names>
</au>
</authors>
<year>1971</year>
<jnl-title>Zh. Fiz. Khim.</jnl-title>
<volume>45</volume>
<pages>2388</pages>
</journal-ref>
<journal-ref id="epl12959bib38" num="38">
<authors>
<au>
<second-name>Chumakov</second-name>
<first-names>A. I.</first-names>
</au>
<au>
<second-name>Sturhahn</second-name>
<first-names>W.</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>123/124</volume>
<pages>781</pages>
</journal-ref>
<journal-ref id="epl12959bib39" num="39">
<authors>
<au>
<second-name>Lipkin</second-name>
<first-names>H.</first-names>
</au>
</authors>
<year>1999/2000</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>123-125</volume>
<pages>349</pages>
</journal-ref>
<journal-ref id="epl12959bib40" num="40">
<authors>
<au>
<second-name>Rüffer</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Chumakov</second-name>
<first-names>A.</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>Hyperfine Interact.</jnl-title>
<volume>128</volume>
<pages>255</pages>
</journal-ref>
<journal-ref id="epl12959bib41" num="41">
<authors>
<au>
<second-name>Otjacques</second-name>
<first-names>C.</first-names>
</au>
<au>
<second-name>Raty</second-name>
<first-names>J.-Y.</first-names>
</au>
<au>
<second-name>Coulet</second-name>
<first-names>M.-V.</first-names>
</au>
<au>
<second-name>Johnson</second-name>
<first-names>M.</first-names>
</au>
<au>
<second-name>Schober</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Bichara</second-name>
<first-names>C.</first-names>
</au>
<au>
<second-name>Gaspard</second-name>
<first-names>J.-P.</first-names>
</au>
</authors>
<year>2009</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>103</volume>
<pages>245901</pages>
</journal-ref>
<journal-ref id="epl12959bib42" num="42">
<authors>
<au>
<second-name>Rauh</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Geick</second-name>
<first-names>R.</first-names>
</au>
<au>
<second-name>Köhler</second-name>
<first-names>H.</first-names>
</au>
<au>
<second-name>Nücker</second-name>
<first-names>N.</first-names>
</au>
<au>
<second-name>Lehner</second-name>
<first-names>N.</first-names>
</au>
</authors>
<year>1981</year>
<jnl-title>J. Phys. C: Solid State Phys.</jnl-title>
<volume>14</volume>
<pages>2705</pages>
</journal-ref>
<journal-ref id="epl12959bib43" num="43">
<authors>
<au>
<second-name>Sosso</second-name>
<first-names>G. C.</first-names>
</au>
<au>
<second-name>Caravati</second-name>
<first-names>S.</first-names>
</au>
<au>
<second-name>Bernasconi</second-name>
<first-names>M.</first-names>
</au>
</authors>
<year>2009</year>
<jnl-title>J. Phys.: Condens. Matter</jnl-title>
<volume>21</volume>
<pages>095410</pages>
</journal-ref>
</reference-list>
</references>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Nuclear forward and inelastic spectroscopy on 125Te and Sb2125Te3</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title>Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.-C.</namePart>
<namePart type="family">Wille</namePart>
<affiliation>Deutsches Elektronen-Synchrotron - D-22607 Hamburg, Germany, EU</affiliation>
<affiliation>E-mail: hans.christian.wille@desy.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. P.</namePart>
<namePart type="family">Hermann</namePart>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">I.</namePart>
<namePart type="family">Sergueev</namePart>
<affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U.</namePart>
<namePart type="family">Pelzer</namePart>
<affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Mchel</namePart>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Claudio</namePart>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<affiliation>Facult des Sciences, Universit de Lige - B-4000 Lige, Belgium, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Peron</namePart>
<affiliation>Institut fr Festkrperforschung, JCNS und JARA-FIT, Forschungszentrum Jlich GmbH D-52425 Jlich, Germany, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Rffer</namePart>
<affiliation>European Synchrotron Radiation Facility - F-38043 Grenoble Cedex, France, EU</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Said</namePart>
<affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu. V.</namePart>
<namePart type="family">Shvyd'ko</namePart>
<affiliation>Argonne National Laboratory, Advanced Photon Source - Argonne, IL 60439, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="letter">letter</genre>
<originInfo>
<publisher>IOP Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2010</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<note type="production">Printed in France</note>
</physicalDescription>
<abstract>We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12)ns and 35493.12(30)eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.</abstract>
<classification authority="pacs">23.20.Lv</classification>
<classification authority="pacs">29.30.Kv</classification>
<classification authority="pacs">63.20.D-</classification>
<relatedItem type="host">
<titleInfo>
<title>Europhysics Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>EPL</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0295-5075</identifier>
<identifier type="eISSN">1286-4854</identifier>
<identifier type="PublisherID">epl</identifier>
<identifier type="CODEN">EULEEJ</identifier>
<identifier type="URL">www.epljournal.org</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>91</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>5</end>
<total>5</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CB1BC07DA6D480B8F967348F2E658CD7EC2D5439</identifier>
<identifier type="DOI">10.1209/0295-5075/91/62001</identifier>
<identifier type="articleID">epl_12959</identifier>
<identifier type="articleNumber">62001</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Europhysics Letters Association</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>Europhysics Letters Association</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/CB1BC07DA6D480B8F967348F2E658CD7EC2D5439/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001005 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001005 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CB1BC07DA6D480B8F967348F2E658CD7EC2D5439
   |texte=   Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024