Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ferromagnetism in Co-doped (La,Sr)TiO3

Identifieur interne : 000F97 ( Istex/Corpus ); précédent : 000F96; suivant : 000F98

Ferromagnetism in Co-doped (La,Sr)TiO3

Auteurs : T. Fix ; M. Liberati ; H. Aubriet ; S-L Sahonta ; R. Bali ; C. Becker ; D. Ruch ; J L Macmanus-Driscoll ; E. Arenholz ; M G Blamire

Source :

RBID : ISTEX:47B3277D0719A27C5EA8993221AA51D398C93271

Abstract

The origin of ferromagnetism in Co-doped (La,Sr)TiO3 epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.

Url:
DOI: 10.1088/1367-2630/11/7/073042

Links to Exploration step

ISTEX:47B3277D0719A27C5EA8993221AA51D398C93271

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ferromagnetism in Co-doped (La,Sr)TiO3</title>
<author>
<name sortKey="Fix, T" sort="Fix, T" uniqKey="Fix T" first="T" last="Fix">T. Fix</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Author to whom any correspondence should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: tf255@cam.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liberati, M" sort="Liberati, M" uniqKey="Liberati M" first="M" last="Liberati">M. Liberati</name>
<affiliation>
<mods:affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aubriet, H" sort="Aubriet, H" uniqKey="Aubriet H" first="H" last="Aubriet">H. Aubriet</name>
<affiliation>
<mods:affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sahonta, S L" sort="Sahonta, S L" uniqKey="Sahonta S" first="S-L" last="Sahonta">S-L Sahonta</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bali, R" sort="Bali, R" uniqKey="Bali R" first="R" last="Bali">R. Bali</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becker, C" sort="Becker, C" uniqKey="Becker C" first="C" last="Becker">C. Becker</name>
<affiliation>
<mods:affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruch, D" sort="Ruch, D" uniqKey="Ruch D" first="D" last="Ruch">D. Ruch</name>
<affiliation>
<mods:affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macmanus Driscoll, J L" sort="Macmanus Driscoll, J L" uniqKey="Macmanus Driscoll J" first="J L" last="Macmanus-Driscoll">J L Macmanus-Driscoll</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Arenholz, E" sort="Arenholz, E" uniqKey="Arenholz E" first="E" last="Arenholz">E. Arenholz</name>
<affiliation>
<mods:affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blamire, M G" sort="Blamire, M G" uniqKey="Blamire M" first="M G" last="Blamire">M G Blamire</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:47B3277D0719A27C5EA8993221AA51D398C93271</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1088/1367-2630/11/7/073042</idno>
<idno type="url">https://api.istex.fr/document/47B3277D0719A27C5EA8993221AA51D398C93271/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ferromagnetism in Co-doped (La,Sr)TiO3</title>
<author>
<name sortKey="Fix, T" sort="Fix, T" uniqKey="Fix T" first="T" last="Fix">T. Fix</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Author to whom any correspondence should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: tf255@cam.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liberati, M" sort="Liberati, M" uniqKey="Liberati M" first="M" last="Liberati">M. Liberati</name>
<affiliation>
<mods:affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aubriet, H" sort="Aubriet, H" uniqKey="Aubriet H" first="H" last="Aubriet">H. Aubriet</name>
<affiliation>
<mods:affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sahonta, S L" sort="Sahonta, S L" uniqKey="Sahonta S" first="S-L" last="Sahonta">S-L Sahonta</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bali, R" sort="Bali, R" uniqKey="Bali R" first="R" last="Bali">R. Bali</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becker, C" sort="Becker, C" uniqKey="Becker C" first="C" last="Becker">C. Becker</name>
<affiliation>
<mods:affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruch, D" sort="Ruch, D" uniqKey="Ruch D" first="D" last="Ruch">D. Ruch</name>
<affiliation>
<mods:affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macmanus Driscoll, J L" sort="Macmanus Driscoll, J L" uniqKey="Macmanus Driscoll J" first="J L" last="Macmanus-Driscoll">J L Macmanus-Driscoll</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Arenholz, E" sort="Arenholz, E" uniqKey="Arenholz E" first="E" last="Arenholz">E. Arenholz</name>
<affiliation>
<mods:affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blamire, M G" sort="Blamire, M G" uniqKey="Blamire M" first="M G" last="Blamire">M G Blamire</name>
<affiliation>
<mods:affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">New Journal of Physics</title>
<title level="j" type="abbrev">New J. Phys.</title>
<idno type="ISSN">1367-2630</idno>
<idno type="eISSN">1367-2630</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2009">2009</date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="10">10</biblScope>
</imprint>
<idno type="ISSN">1367-2630</idno>
</series>
<idno type="istex">47B3277D0719A27C5EA8993221AA51D398C93271</idno>
<idno type="DOI">10.1088/1367-2630/11/7/073042</idno>
<idno type="articleID">316078</idno>
<idno type="articleNumber">073042</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1367-2630</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The origin of ferromagnetism in Co-doped (La,Sr)TiO3 epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>T Fix</name>
<affiliations>
<json:string>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</json:string>
<json:string>Author to whom any correspondence should be addressed.</json:string>
<json:string>E-mail: tf255@cam.ac.uk</json:string>
</affiliations>
</json:item>
<json:item>
<name>M Liberati</name>
<affiliations>
<json:string>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>H Aubriet</name>
<affiliations>
<json:string>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>S-L Sahonta</name>
<affiliations>
<json:string>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>R Bali</name>
<affiliations>
<json:string>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>C Becker</name>
<affiliations>
<json:string>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>D Ruch</name>
<affiliations>
<json:string>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>J L MacManus-Driscoll</name>
<affiliations>
<json:string>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>E Arenholz</name>
<affiliations>
<json:string>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M G Blamire</name>
<affiliations>
<json:string>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>paper</json:string>
</originalGenre>
<abstract>The origin of ferromagnetism in Co-doped (La,Sr)TiO3 epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.</abstract>
<qualityIndicators>
<score>4.858</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595.276 x 841.89 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>582</abstractCharCount>
<pdfWordCount>3410</pdfWordCount>
<pdfCharCount>18886</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>79</abstractWordCount>
</qualityIndicators>
<title>Ferromagnetism in Co-doped (La,Sr)TiO3</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>11</volume>
<publisherId>
<json:string>nj</json:string>
</publisherId>
<pages>
<total>10</total>
<last>10</last>
<first>1</first>
</pages>
<issn>
<json:string>1367-2630</json:string>
</issn>
<issue>7</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1367-2630</json:string>
</eissn>
<title>New Journal of Physics</title>
</host>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1088/1367-2630/11/7/073042</json:string>
</doi>
<id>47B3277D0719A27C5EA8993221AA51D398C93271</id>
<score>0.24287948</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/47B3277D0719A27C5EA8993221AA51D398C93271/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/47B3277D0719A27C5EA8993221AA51D398C93271/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/47B3277D0719A27C5EA8993221AA51D398C93271/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Ferromagnetism in Co-doped (La,Sr)TiO3</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>IOP Publishing</publisher>
<availability>
<p>IOP Publishing and Deutsche Physikalische Gesellschaft</p>
</availability>
<date>2009</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Ferromagnetism in Co-doped (La,Sr)TiO3</title>
<author xml:id="author-1">
<persName>
<forename type="first">T</forename>
<surname>Fix</surname>
</persName>
<email>tf255@cam.ac.uk</email>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
<affiliation>Author to whom any correspondence should be addressed.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">M</forename>
<surname>Liberati</surname>
</persName>
<affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">H</forename>
<surname>Aubriet</surname>
</persName>
<affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">S-L</forename>
<surname>Sahonta</surname>
</persName>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">R</forename>
<surname>Bali</surname>
</persName>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">C</forename>
<surname>Becker</surname>
</persName>
<affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">D</forename>
<surname>Ruch</surname>
</persName>
<affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">J L</forename>
<surname>MacManus-Driscoll</surname>
</persName>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">E</forename>
<surname>Arenholz</surname>
</persName>
<affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</affiliation>
</author>
<author xml:id="author-10">
<persName>
<forename type="first">M G</forename>
<surname>Blamire</surname>
</persName>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
</author>
</analytic>
<monogr>
<title level="j">New Journal of Physics</title>
<title level="j" type="abbrev">New J. Phys.</title>
<idno type="pISSN">1367-2630</idno>
<idno type="eISSN">1367-2630</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2009"></date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="10">10</biblScope>
</imprint>
</monogr>
<idno type="istex">47B3277D0719A27C5EA8993221AA51D398C93271</idno>
<idno type="DOI">10.1088/1367-2630/11/7/073042</idno>
<idno type="articleID">316078</idno>
<idno type="articleNumber">073042</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The origin of ferromagnetism in Co-doped (La,Sr)TiO3 epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2009">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/47B3277D0719A27C5EA8993221AA51D398C93271/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1"</istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_5_2.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="nj316078">
<article-metadata>
<jnl-data jnlid="nj">
<jnl-fullname>New Journal of Physics</jnl-fullname>
<jnl-abbreviation>New J. Phys.</jnl-abbreviation>
<jnl-shortname>NJP</jnl-shortname>
<jnl-issn>1367-2630</jnl-issn>
<jnl-coden>NJOPFM</jnl-coden>
<jnl-imprint>IOP Publishing</jnl-imprint>
<jnl-web-address>stacks.iop.org/NJP</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2009</year-publication>
<volume-number>11</volume-number>
</volume-data>
<issue-data>
<issue-number>7</issue-number>
<coverdate>July 2009</coverdate>
</issue-data>
<article-data>
<article-type type="paper" sort="regular"></article-type>
<type-number type="paper" numbering="article" artnum="073042">073042</type-number>
<article-number>316078</article-number>
<first-page>1</first-page>
<last-page>10</last-page>
<length>10</length>
<pii></pii>
<doi>10.1088/1367-2630/11/7/073042</doi>
<copyright>IOP Publishing and Deutsche Physikalische Gesellschaft</copyright>
<ccc>1367-2630/09/073042+10$30.00</ccc>
<printed></printed>
</article-data>
</article-metadata>
<header>
<title-group>
<title>Ferromagnetism in Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
</title>
<short-title>Ferromagnetism in Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
</short-title>
<ej-title>Ferromagnetism in Co-doped (La,Sr)TiO3</ej-title>
</title-group>
<author-group>
<author address="nj316078ad1" alt-address="nj316078aad4" email="nj316078ea1">
<first-names>T</first-names>
<second-name>Fix</second-name>
</author>
<author address="nj316078ad2">
<first-names>M</first-names>
<second-name>Liberati</second-name>
</author>
<author address="nj316078ad3">
<first-names>H</first-names>
<second-name>Aubriet</second-name>
</author>
<author address="nj316078ad1">
<first-names>S-L</first-names>
<second-name>Sahonta</second-name>
</author>
<author address="nj316078ad1">
<first-names>R</first-names>
<second-name>Bali</second-name>
</author>
<author address="nj316078ad3">
<first-names>C</first-names>
<second-name>Becker</second-name>
</author>
<author address="nj316078ad3">
<first-names>D</first-names>
<second-name>Ruch</second-name>
</author>
<author address="nj316078ad1">
<first-names>J L</first-names>
<second-name>MacManus-Driscoll</second-name>
</author>
<author address="nj316078ad2">
<first-names>E</first-names>
<second-name>Arenholz</second-name>
</author>
<author address="nj316078ad1">
<first-names>M G</first-names>
<second-name>Blamire</second-name>
</author>
<short-author-list>Fix T
<italic>et al</italic>
</short-author-list>
</author-group>
<address-group>
<address id="nj316078ad1" showid="yes">Department of Materials Science,
<orgname>University of Cambridge</orgname>
, Pembroke Street, Cambridge CB2 3QZ,
<country>UK</country>
</address>
<address id="nj316078ad2" showid="yes">
<orgname>Advanced Light Source</orgname>
, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
<country>USA</country>
</address>
<address id="nj316078ad3" showid="yes">Laboratoire de Technologies Industrielles,
<orgname>Centre de Recherche Public Henri Tudor</orgname>
, 66 rue du Luxembourg, Esch/Alzette 4002,
<country>Luxembourg</country>
</address>
<address id="nj316078aad4" alt="yes" showid="yes">Author to whom any correspondence should be addressed.</address>
<e-address id="nj316078ea1">
<email mailto="tf255@cam.ac.uk">tf255@cam.ac.uk</email>
</e-address>
</address-group>
<history received="21 April 2009" online="23 July 2009"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">The origin of ferromagnetism in Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10 K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.</p>
</abstract>
</abstract-group>
</header>
<body refstyle="numeric">
<sec-level1 id="nj305222s1" label="1">
<heading>Introduction</heading>
<p indent="no">Owing to their potential for manipulating both the spin and charge degrees of freedom in the same material (spin electronics or spintronics), and because they provide an alternative route for spin injection into semiconductors [
<cite linkend="nj316078bib1">1</cite>
], dilute magnetic semiconductors (DMSs) have been under intensive study over the past decade. While the DMS
<inline-eqn>
<math-text>
<upright>Ga</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>Mn</upright>
<sub>
<italic>x</italic>
</sub>
<upright>As</upright>
</math-text>
</inline-eqn>
has been proven to be an intrinsic ferromagnet [
<cite linkend="nj316078bib2">2</cite>
], its Curie temperature is far below room temperature (
<inline-eqn>
<math-text><200 
<upright>K</upright>
</math-text>
</inline-eqn>
) and therefore practical applications are limited. More recently, intensive theoretical and experimental studies have focused on oxide-based DMSs such as transition-metal-doped ZnO [
<cite linkend="nj316078bib3">3</cite>
],
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib4">4</cite>
],
<inline-eqn>
<math-text>
<upright>SnO</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib5">5</cite>
],
<inline-eqn>
<math-text>
<upright>Cu</upright>
<sub>2</sub>
<upright>O</upright>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib6">6</cite>
] and even undoped
<inline-eqn>
<math-text>
<upright>HfO</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib7">7</cite>
], which were reported to show room temperature ferromagnetism. The origin of the ferromagnetism in these materials is still in dispute, because in early studies at least it was difficult to exclude the possibility of contamination with magnetic particles or the precipitation of magnetic metallic clusters [
<cite linkend="nj316078bib8">8</cite>
<cite linkend="nj316078bib9">9</cite>
]. The majority of the research on oxide DMS has focused on ZnO; here, we report studies on Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib10">10</cite>
], where room temperature ferromagnetism and large spin polarization are reported [
<cite linkend="nj316078bib11">11</cite>
], while the host oxide is a strongly correlated metal [
<cite linkend="nj316078bib12">12</cite>
]. This material is particularly interesting because it allows independent control of both the magnetic and carrier doping over a wide range as the
<inline-eqn>
<math-text>
<upright>La</upright>
/
<upright>Sr</upright>
</math-text>
</inline-eqn>
concentration ratio induces a variation from an insulator to a metal or a semiconductor.</p>
<p>We have performed studies by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), x-ray photoemission spectroscopy (XPS), transport measurements, magnetometry and transmission electron microscopy (TEM) on Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
with different
<inline-eqn>
<math-text>
<upright>La</upright>
/
<upright>Sr</upright>
</math-text>
</inline-eqn>
ratios. We show that the ferromagnetism is not induced by Co metallic clusters within the detection limits of the instruments and we observe no clear correlation between the ferromagnetism and the carrier density.</p>
</sec-level1>
<sec-level1 id="nj316078s2" label="2">
<heading>Experimental</heading>
<p indent="no">Stoichiometric mixtures of high purity (
<inline-eqn>
<math-text>99.99%</math-text>
</inline-eqn>
)
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<upright>SrCO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>Co</upright>
<sub>3</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
powders were used to prepare
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>La</upright>
<sub>
<italic>x</italic>
</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
targets with
<inline-eqn>
<math-text>
<italic>x</italic>
=0</math-text>
</inline-eqn>
, 0.2, 0.5, 0.8 and 1, by milling, pre-sintering at
<inline-eqn>
<math-text>900 °
<upright>C</upright>
</math-text>
</inline-eqn>
for 6 h, pressing and sintering at
<inline-eqn>
<math-text>1300 °
<upright>C</upright>
</math-text>
</inline-eqn>
for 6 h. Films were grown by pulsed laser deposition from these targets using a KrF laser with a 248 nm wavelength, 10 Hz repetition rate, and energy of
<inline-eqn>
<math-text>150 
<upright>mJ</upright>
<upright>pulse</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
, giving a fluence of around
<inline-eqn>
<math-text>1 
<upright>J</upright>
<upright>cm</upright>
<sup>−2</sup>
</math-text>
</inline-eqn>
on the target at a substrate–target distance of 80 mm. The deposition temperature was
<inline-eqn>
<math-text>600 °
<upright>C</upright>
</math-text>
</inline-eqn>
and the atmosphere while depositing and cooling down was
<inline-eqn>
<math-text>10
<sup>−6</sup>
<upright>mbar</upright>
</math-text>
</inline-eqn>
of
<inline-eqn>
<math-text>
<upright>O</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
. Prior to deposition the
<inline-eqn>
<math-text>
<upright>NdGaO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
(NGO) (001) substrates were annealed in vacuum at
<inline-eqn>
<math-text>800 °
<upright>C</upright>
</math-text>
</inline-eqn>
for 2 h to give an atomically defined surface structure, confirmed by an atomic force microscope (AFM) in tapping mode at room temperature. The thickness of each film is around 100 nm. The orientation and crystallinity of the films were determined by XRD with a four-circle Bruker D8 Advance diffractometer (
<inline-eqn>
<math-text>
<upright>Cu</upright>
<upright>K</upright>
<sub>α</sub>
</math-text>
</inline-eqn>
). Cross-sectional TEM was performed on the sample annealed in reducing conditions by preparation with mechanical polishing and argon ion million at 4 kV. Lattice images of the film were taken on a JEOL 4000 EX with a spherical aberration coefficient of 0.9 mm and a point-to-point resolution of 0.17 nm, operating at 350 kV. Magnetic measurements were carried out from 300 to 5 K with a superconducting quantum interference device (SQUID) with the magnetic field applied in the film plane. The samples were handled with extreme care to avoid contamination by extrinsic magnetic elements. Electrical contacts were made with an Al wire-bonder, the resistivity was measured by the four-probe technique and the Hall effect in a Van der Pauw configuration. XPS measurements were performed at room temperature using an
<inline-eqn>
<math-text>
<upright>AlK</upright>
<sub>α</sub>
</math-text>
</inline-eqn>
(1486.7 eV) radiation as excitation source, at 12 kV and 33.4 mA in a
<inline-eqn>
<math-text>10
<sup>−9</sup>
<upright>mbar</upright>
</math-text>
</inline-eqn>
vacuum. The surfaces were cleaned for 5 min in
<inline-eqn>
<math-text>
<upright>Ar</upright>
<sup>+</sup>
</math-text>
</inline-eqn>
at
<inline-eqn>
<math-text>5×10
<sup>−5</sup>
<upright>mbar</upright>
</math-text>
</inline-eqn>
with an energy of 1 keV. XAS and XMCD measurements on the Co
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
and Ti
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
edges were performed at the Advanced Light Source on beamline 6.3.1. The XAS signal was detected in total electron yield (TEY, surface sensitivity), at room temperature, with a magnetic field of
<inline-eqn>
<math-text>±2 
<upright>kOe</upright>
</math-text>
</inline-eqn>
applied parallel to the propagation direction of the x-ray beam, the latter being applied at an angle of
<inline-eqn>
<math-text>30°</math-text>
</inline-eqn>
to the sample surface.</p>
</sec-level1>
<sec-level1 id="nj316078s3" label="3">
<heading>Results and discussion</heading>
<p indent="no">Figure 
<figref linkend="nj316078fig1">1</figref>
shows
<inline-eqn>
<math-text>&thetas;</math-text>
</inline-eqn>
<inline-eqn>
<math-text>2&thetas;</math-text>
</inline-eqn>
XRD patterns for films based on
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>La</upright>
<sub>
<italic>x</italic>
</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
with
<inline-eqn>
<math-text>
<italic>x</italic>
=0</math-text>
</inline-eqn>
, 0.2, 0.5, 0.8 and 1 grown on NGO (001). The films grow epitaxially without any parasitic phase detected. Asymmetric reflection of XRD indicates that the epitaxial relationship is [100] Co-(La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
(001)∥ [110]</math-text>
</inline-eqn>
NGO (001), where Co-(La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
and NGO are indexed in the pseudo-cubic and orthorhombic phase, respectively. The rocking curves on the Co-(La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
(002) reflection give a full-width at half-maximum of around
<inline-eqn>
<math-text>0.1°</math-text>
</inline-eqn>
, which indicates a high degree of crystallite orientation. The evolution of the out-of-plane lattice parameter of the films extracted from the spectra shows a clear increase from
<inline-eqn>
<math-text>
<italic>x</italic>
=0</math-text>
</inline-eqn>
to
<inline-eqn>
<math-text>
<italic>x</italic>
=0.8</math-text>
</inline-eqn>
, indicating the effective substitution of Sr by La. However, for
<inline-eqn>
<math-text>
<italic>x</italic>
=1</math-text>
</inline-eqn>
, the lattice parameter value is lower than expected due to strain relaxation (as observed with reciprocal space maps, not shown here).</p>
<figure id="nj316078fig1" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="21.9pc" printcolour="no" filename="images/nj316078fig1.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="yes" filename="images/nj316078fig1.jpg"></graphic-file>
</graphic>
<caption type="figure" id="nj316078fc1" label="Figure 1">
<p indent="no">XRD
<inline-eqn>
<math-text>&thetas;–2&thetas;</math-text>
</inline-eqn>
spectrum of NGO
<inline-eqn>
<math-text>(001)∥
<upright>Sr</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>La</upright>
<sub>
<italic>x</italic>
</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
(100 nm) for
<inline-eqn>
<math-text>
<italic>x</italic>
=0</math-text>
</inline-eqn>
, 0.2, 0.5, 0.8 and 1.</p>
</caption>
</figure>
<p>We have investigated the magnetic properties of the as-grown films at both room temperature and 10 K. No evidence of ferromagnetism or anomalous Hall effect could be evidenced within the detection limit of the instruments for any of the La,Sr ratios. In a previous work [
<cite linkend="nj316078bib11">11</cite>
] it has been shown that the magnetization of the films increases when the deposition oxygen pressure decreases, suggesting that oxygen vacancies have a role in the magnetism. Here, we focus on the evolution of the ferromagnetism with successive thermal annealing at
<inline-eqn>
<math-text>500 °
<upright>C</upright>
</math-text>
</inline-eqn>
for 1 h in reducing (
<inline-eqn>
<math-text>2%</math-text>
</inline-eqn>
<inline-eqn>
<math-text>
<upright>H</upright>
<sub>2</sub>
/
<upright>Ar</upright>
</math-text>
</inline-eqn>
) or oxidizing conditions (air) (figure 
<figref linkend="nj316078fig2">2</figref>
(a)). We observe that after thermal annealing under reducing conditions the films become ferromagnetic at room temperature, and then non ferromagnetic after subsequent annealing under oxidizing conditions. This evolution repeats for several cycles, after which the effect tends to vanish, indicating that the phenomenon is not fully reversible. It should be noted that no activation of ferromagnetism was observed for the clean reference NGO substrates annealed under the same conditions, which excludes any contamination by impurities from the furnace or from the substrates. Furthermore, the total magnetization measured increases proportionally to the film thickness. A similar reversible activation of ferromagnetism has been observed in Co-doped ZnO, using alternating Zn interstitial incorporation and oxidation with
<inline-eqn>
<math-text>
<upright>O</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib13">13</cite>
<cite linkend="nj316078bib14">14</cite>
]. However, in our case the activation or disappearance of ferromagnetism is supposedly only linked to an oxygen-related effect as will be discussed below.</p>
<figure id="nj316078fig2" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="31.6pc" printcolour="no" filename="images/nj316078fig2.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="yes" filename="images/nj316078fig2.jpg"></graphic-file>
</graphic>
<caption type="figure" id="nj316078fc2" label="Figure 2">
<p indent="no">(a) Evolution of the magnetization at room temperature for a
<inline-eqn>
<math-text>
<upright>LaTi</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
sample after successive annealing in reducing or oxidizing conditions. Similar results are obtained for different
<inline-eqn>
<math-text>
<upright>La</upright>
/
<upright>Sr</upright>
</math-text>
</inline-eqn>
concentration ratios. For a
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
sample annealed in reducing conditions: (b) evolution of the saturation magnetization as a function of the temperature, (c) magnetization curve at room temperature and (d) coercive field as a function of the in-plane orientation. Zero angle is along NGO [100].</p>
</caption>
</figure>
<p>The maximum magnetization observed is about
<inline-eqn>
<math-text>3–4 μ
<sub>
<upright>B</upright>
</sub>
<upright>Co</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
, which is significantly higher than the value of pure cobalt metal (
<inline-eqn>
<math-text>1.72 μ
<sub>
<upright>B</upright>
</sub>
<upright>Co</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
). This has been observed in other studies as well [
<cite linkend="nj316078bib10">10</cite>
<cite linkend="nj316078bib11">11</cite>
]. It might originate from the presence of high- and low-spin
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>3+</sup>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib15">15</cite>
], the effective moment of high spin
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>3+</sup>
</math-text>
</inline-eqn>
(
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
) being
<inline-eqn>
<math-text>4.90 μ
<sub>
<upright>B</upright>
</sub>
</math-text>
</inline-eqn>
(
<inline-eqn>
<math-text>3.87 μ
<sub>
<upright>B</upright>
</sub>
</math-text>
</inline-eqn>
). However, it could also originate from a transferred moment on Ti or from a very small magnetic moment on a large fraction of oxygen atoms, accounting for an important overall moment, a theory that is still in debate. Figure 
<figref linkend="nj316078fig2">2</figref>
(b) shows that the Curie temperature of the samples is around 460 K as reported in previous studies [
<cite linkend="nj316078bib10">10</cite>
]. The samples present a significant coercitivity (figure 
<figref linkend="nj316078fig2">2</figref>
(c)) and uniaxial in-plane anisotropy, with the easy axis in the [010]-direction of the NGO substrate (figure 
<figref linkend="nj316078fig2">2</figref>
(d)). This uniaxial anisotropy can be caused when the films are fully strained and an in-plane distortion of the lattice parameters is induced by the orthorhombic NGO substrate (
<inline-eqn>
<math-text>
<italic>a</italic>
=0.5433 
<upright>nm</upright>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<italic>b</italic>
=0.5503 
<upright>nm</upright>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>c</italic>
=0.7715 
<upright>nm</upright>
</math-text>
</inline-eqn>
). Most importantly, the anisotropy observed is an indication that the ferromagnetism is linked to the matrix through lattice strain and—as we will confirm with other experiments—not due to randomly dispersed inclusions that would be caused by external contamination.</p>
<p>We now focus on the transport properties of the samples. In a previous work where
<inline-eqn>
<math-text>
<upright>SrTiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
(STO) substrates were used to grow Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib16">16</cite>
], high electronic mobilities up to
<inline-eqn>
<math-text>10
<sup>4</sup>
<upright>cm</upright>
<sup>2</sup>
<upright>V</upright>
<sup>−1</sup>
<upright>s</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
at 2 K were observed when the oxygen pressure during the growth was low. It was suggested that the high mobility may come from the STO substrate and not the thin film. We have observed indeed that after thermal annealing under vacuum or low
<inline-eqn>
<math-text>
<upright>O</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
pressures the STO substrates became conductive, due to the creation of oxygen vacancies. However, NGO substrates remain insulating under the same conditions and are therefore suitable for transport measurements of the films. Consequently, we have measured and calculated the carrier density and mobility as a function of the temperature for a thin film based on
<inline-eqn>
<math-text>
<upright>NGO</upright>
(001)∥
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
. Figure 
<figref linkend="nj316078fig3">3</figref>
(a) shows the evolution of the mobility as a function of the temperature for a
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
sample as-grown and annealed in reducing conditions. At 10 K the carrier density and mobility are, respectively,
<inline-eqn>
<math-text>8×10
<sup>21</sup>
<upright>cm</upright>
<sup>−3</sup>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>9 
<upright>cm</upright>
<sup>2</sup>
<upright>V</upright>
<sup>−1</sup>
<upright>s</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
for the as-grown film and
<inline-eqn>
<math-text>6×10
<sup>21</sup>
<upright>cm</upright>
<sup>−3</sup>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>6 
<upright>cm</upright>
<sup>2</sup>
<upright>V</upright>
<sup>−1</sup>
<upright>s</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
for the annealed one. The mobility value is especially very far from the
<inline-eqn>
<math-text>10
<sup>4</sup>
<upright>cm</upright>
<sup>2</sup>
<upright>V</upright>
<sup>−1</sup>
<upright>s</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
range observed in the previous work using STO substrates [
<cite linkend="nj316078bib16">16</cite>
], suggesting that it was rather due to the oxygen-deficiency in the STO substrate, which is still a topical issue in the case of interfacial effects [
<cite linkend="nj316078bib17">17</cite>
]. The values obtained here are quite close to previous measurements on
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
or
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.67</sub>
<upright>Sr</upright>
<sub>0.33</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
films grown on other substrates [
<cite linkend="nj316078bib16">16</cite>
<cite linkend="nj316078bib18">18</cite>
]. The carriers are electrons and the value for the carrier concentration is in good agreement with around 0.5 carrier per formula unit as expected from the film composition [
<cite linkend="nj316078bib11">11</cite>
]. There is no large change in carrier concentration arising from the annealing under reducing conditions, which means that the introduction of oxygen vacancies induces a small variation in electron concentration. In fact, the mobility and carrier density are slightly reduced after the annealing, implying defect trapping and scattering. While the La,Sr ratio induces strong changes in the carrier density and mobility (table 
<tabref linkend="nj316078tab1">1</tabref>
), it does not cause any consistent variation of the magnetic moment. This could be interpreted as a sign that the ferromagnetism in this system is rather activated by defects than mediated by carriers; however, there is a need for further and novel characterizations of defects and oxygen vacancies in DMSs to support or infer such hypotheses.</p>
<figure id="nj316078fig3" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="17.6pc" printcolour="no" filename="images/nj316078fig3.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="yes" filename="images/nj316078fig3.jpg"></graphic-file>
</graphic>
<caption type="figure" id="nj316078fc3" label="Figure 3">
<p indent="no">(a) Mobility as a function of the temperature for
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>La</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
as-grown and annealed in reducing conditions. (b) Anomalous Hall effect measured at 10 K on a
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>La</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
annealed in reducing conditions. The ordinary Hall effect has been subtracted for viewing purposes, the field has been varied from 9 T to
<inline-eqn>
<math-text>−9 
<upright>T</upright>
</math-text>
</inline-eqn>
and then back to 9 T.</p>
</caption>
</figure>
<table id="nj316078tab1" frame="topbot" position="float" width="fit" place="top">
<caption type="table" id="nj316078tc1" label="Table 1">
<p>Evolution of the carrier density and mobility at 220 K in
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>La</upright>
<sub>
<italic>x</italic>
</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
thin films.</p>
</caption>
<tgroup cols="8">
<colspec colnum="1" colname="col1" align="left"></colspec>
<colspec colnum="2" colname="col2" align="center"></colspec>
<colspec colnum="3" colname="col3" align="center"></colspec>
<thead>
<row>
<entry>
<inline-eqn>
<math-text>
<italic>x</italic>
</math-text>
</inline-eqn>
</entry>
<entry>Carrier density (
<inline-eqn>
<math-text>10
<sup>21</sup>
<upright>cm</upright>
<sup>−3</sup>
</math-text>
</inline-eqn>
)</entry>
<entry>Mobility
<inline-eqn>
<math-text>(
<upright>cm</upright>
<sup>2</sup>
<upright>V</upright>
<sup>−1</sup>
<upright>s</upright>
<sup>−1</sup>
)</math-text>
</inline-eqn>
</entry>
</row>
</thead>
<tbody>
<row>
<entry>0</entry>
<entry>Insulating</entry>
<entry></entry>
</row>
<row>
<entry>0.2</entry>
<entry>2.4</entry>
<entry>5.2</entry>
</row>
<row>
<entry>0.5</entry>
<entry>6.0</entry>
<entry>4.2</entry>
</row>
<row>
<entry>0.8</entry>
<entry>9.9</entry>
<entry>0.65</entry>
</row>
<row>
<entry>1</entry>
<entry>0.082</entry>
<entry>0.021</entry>
</row>
</tbody>
</tgroup>
</table>
<p>The anomalous Hall effect was observed at 10 K on a
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>La</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
sample annealed in reducing conditions, as shown in figure 
<figref linkend="nj316078fig3">3</figref>
(b). It is commonly assumed that the observation of anomalous Hall effect is a good indicator of intrinsic ferromagnetism [
<cite linkend="nj316078bib19">19</cite>
]. However, there seems to be a contradiction as superparamagnetism and anomalous Hall effect have been simultaneously observed in Co:
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib20">20</cite>
] and Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib21">21</cite>
]. Therefore, it is necessary to investigate if there is pure Co in our system that could be superparamagnetic.</p>
<p>After having investigated the conditions for the appearance of ferromagnetism, we now try to understand its origin: is it intrinsic or extrinsic? The quality of the epitaxy is confirmed by high resolution TEM as shown in figure 
<figref linkend="nj316078fig4">4</figref>
(a), and no Co clusters or secondary phases can be observed within the detection limits of the instrument. This is consistent with the electron diffraction pattern in figure 
<figref linkend="nj316078fig4">4</figref>
(b) which shows only diffraction periodicities relating to the (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
crystalline phase. To confirm the presence or absence of Co clusters, thin films composed of
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
have been analyzed by XPS at room temperature. Figure 
<figref linkend="nj316078fig5">5</figref>
shows a scan with the Co contribution for an as-grown sample and for the same sample after annealing in reducing conditions. According to previous work [
<cite linkend="nj316078bib22">22</cite>
], the
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>0</sup>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
(
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>3+</sup>
</math-text>
</inline-eqn>
) contributions should be shifted in energy by only about 2.8 eV (0.9 eV, respectively). Therefore, the absolute binding energies do not always allow the determination of the Co chemical environment. Here for the as-grown film Co
<inline-eqn>
<math-text>2
<upright>P</upright>
<sub>3/2</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>2
<upright>P</upright>
<sub>1/2</sub>
</math-text>
</inline-eqn>
contributions are observed at 779.7 and 795.5 eV, respectively. The presence of high intensity satellite peaks at 784.8 and 801.5 eV (marked s in the figure) indicates the formation of octahedrally coordinated
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
 [
<cite linkend="nj316078bib23">23</cite>
<cite linkend="nj316078bib24">24</cite>
]. No significant change in the spectra was observed after the annealing.</p>
<figure id="nj316078fig4" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="31.6pc" printcolour="no" filename="images/nj316078fig4.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="images/nj316078fig4.jpg"></graphic-file>
</graphic>
<caption type="figure" id="nj316078fc4" label="Figure 4">
<p indent="no">(a) High resolution TEM image and (b) diffraction pattern along NGO [100] of a
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
film annealed in reducing conditions.</p>
</caption>
</figure>
<figure id="nj316078fig5" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="21.9pc" printcolour="no" filename="images/nj316078fig5.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="yes" filename="images/nj316078fig5.jpg"></graphic-file>
</graphic>
<caption type="figure" id="nj316078fc5" label="Figure 5">
<p indent="no">XPS spectra showing
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
contribution for
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
as-grown and annealed in reducing conditions.</p>
</caption>
</figure>
<p>XAS and XMCD measurements were performed at the Co
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
and Ti
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
edges of
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
thin films. Figure 
<figref linkend="nj316078fig6">6</figref>
shows XAS spectra at room temperature at the Co
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
and Ti
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
edges for an as-grown sample and a sample annealed in reducing conditions. No XMCD signal could be measured in TEY for Co
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
and Ti
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
edges, indicating that these states are not polarized. The Co
<inline-eqn>
<math-text>
<italic>L</italic>
<sub>2,3</sub>
</math-text>
</inline-eqn>
XAS spectra show a multiplet structure typical of
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
, both for the as-grown and annealed samples, which is in agreement with the XPS experiment. This proves clearly that the ferromagnetism does not originate from metallic Co. However, further experiments will be needed to investigate if the ferromagnetism originates from oxygen deficiencies, as suggested in similar XMCD studies [
<cite linkend="nj316078bib25">25</cite>
<cite linkend="nj316078bib26">26</cite>
].</p>
<figure id="nj316078fig6" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="21.6pc" printcolour="no" filename="images/nj316078fig6.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="yes" filename="images/nj316078fig6.jpg"></graphic-file>
</graphic>
<caption type="figure" id="nj316078fc6" label="Figure 6">
<p indent="no">XAS spectra at 300 K at Co and Ti
<inline-eqn>
<math-text>
<upright>L</upright>
<sub>2,3</sub>
</math-text>
</inline-eqn>
edges for
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
as-grown and annealed in reducing conditions.</p>
</caption>
</figure>
</sec-level1>
<sec-level1 id="nj316078s4" label="4">
<heading>Conclusions</heading>
<p indent="no">We have observed the activation and deactivation of ferromagnetism in Co-doped (La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
epitaxial thin films. Magnetic measurements, XPS, XAS and TEM indicate that the activation of the ferromagnetism is not due to the presence of pure Co, in
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>Ti</upright>
<sub>0.98</sub>
<upright>Co</upright>
<sub>0.02</sub>
<upright>O</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
samples, and it is not carrier mediated. Therefore, this system is very promising and further experiments and theoretical calculations will be necessary to investigate the role of the oxygen.</p>
</sec-level1>
<acknowledgment>
<heading>Acknowledgments</heading>
<p indent="no">We acknowledge the financial support from the European Union under Framework 6 program for the Nanoxide project (Novel Nanoscale Devices based on functional Oxide Interfaces). We are grateful to Mary Vickers for fruitful discussions on XRD.</p>
</acknowledgment>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="numeric">
<journal-ref id="nj316078bib1" num="1">
<authors>
<au>
<second-name>Wolf</second-name>
<first-names>S A</first-names>
</au>
<au>
<second-name>Awschalom</second-name>
<first-names>D D</first-names>
</au>
<au>
<second-name>Buhrman</second-name>
<first-names>R A</first-names>
</au>
<au>
<second-name>Daughton</second-name>
<first-names>J M</first-names>
</au>
<au>
<second-name>von Molnár</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Roukes</second-name>
<first-names>M L</first-names>
</au>
<au>
<second-name>Chtchelkanova</second-name>
<first-names>A Y</first-names>
</au>
<au>
<second-name>Treger</second-name>
<first-names>D M</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Spintronics: a spin-based electronics vision for the future</art-title>
<jnl-title>Science</jnl-title>
<volume>294</volume>
<pages>1488</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1065389</cr_doi>
<cr_issn type="print">00368075</cr_issn>
<cr_issn type="electronic">10959203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib2" num="2">
<authors>
<au>
<second-name>Ohno</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Shen</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Matsukura</second-name>
<first-names>F</first-names>
</au>
<au>
<second-name>Oiwa</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Endo</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Katsumoto</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Iye</second-name>
<first-names>Y</first-names>
</au>
</authors>
<year>1996</year>
<art-title>(Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>69</volume>
<pages>363</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.118061</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib3" num="3">
<authors>
<au>
<second-name>Ueda</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Tabata</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Kawai</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Magnetic and electric properties of transition-metal-doped ZnO films</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>79</volume>
<pages>988</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1384478</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib4" num="4">
<authors>
<au>
<second-name>Matsumoto</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Murakami</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Shono</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Hasegawa</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Fukumura</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Kawasaki</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Ahmet</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Chikyow</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Koshihara</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Koinuma</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide</art-title>
<jnl-title>Science</jnl-title>
<volume>291</volume>
<pages>854</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1056186</cr_doi>
<cr_issn type="print">00368075</cr_issn>
<cr_issn type="electronic">10959203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib5" num="5">
<authors>
<au>
<second-name>Ogale</second-name>
<first-names>S B</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2003</year>
<art-title>High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped
<inline-eqn>
<math-text>
<upright>SnO</upright>
<sub>2</sub>
</math-text>
</inline-eqn>
-
<inline-eqn>
<math-text>δ</math-text>
</inline-eqn>
</art-title>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>91</volume>
<pages>077205</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevLett.91.077205</cr_doi>
<cr_issn type="print">00319007</cr_issn>
<cr_issn type="electronic">10797114</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib6" num="6">
<authors>
<au>
<second-name>Liu</second-name>
<first-names>Y L</first-names>
</au>
<au>
<second-name>Harrington</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Yates</second-name>
<first-names>K A</first-names>
</au>
<au>
<second-name>Wei</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Blamire</second-name>
<first-names>M G</first-names>
</au>
<au>
<second-name>MacManus-Driscoll</second-name>
<first-names>J L</first-names>
</au>
<au>
<second-name>Liu</second-name>
<first-names>Y C</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Epitaxial, ferromagnetic
<inline-eqn>
<math-text>
<upright>Cu</upright>
<sub>2−
<italic>x</italic>
</sub>
<upright>Mn</upright>
<sub>
<italic>x</italic>
</sub>
<upright>O</upright>
</math-text>
</inline-eqn>
films on (001) Si by near-room-temperature electrodeposition</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>87</volume>
<pages>222108</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.2136349</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib7" num="7">
<authors>
<au>
<second-name>Venkatesan</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Fitzgerald</second-name>
<first-names>C B</first-names>
</au>
<au>
<second-name>Coey</second-name>
<first-names>J M D</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Unexpected magnetism in a dielectric oxide</art-title>
<jnl-title>Nature</jnl-title>
<volume>430</volume>
<pages>630</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1038/430630a</cr_doi>
<cr_issn type="print">00280836</cr_issn>
<cr_issn type="electronic">14764687</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib8" num="8">
<authors>
<au>
<second-name>Belghazi</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Schmerber</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Colis</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Rehspringer</second-name>
<first-names>J L</first-names>
</au>
<au>
<second-name>Dinia</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Extrinsic origin of ferromagnetism in ZnO and
<inline-eqn>
<math-text>
<upright>Zn</upright>
<sub>0.9</sub>
<upright>Co</upright>
<sub>0.1</sub>
<upright>O</upright>
</math-text>
</inline-eqn>
magnetic semiconductor films prepared by sol–gel technique</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>89</volume>
<pages>122504</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.2355462</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib9" num="9">
<authors>
<au>
<second-name>Park</second-name>
<first-names>J H</first-names>
</au>
<au>
<second-name>Kim</second-name>
<first-names>M G</first-names>
</au>
<au>
<second-name>Jang</second-name>
<first-names>H M</first-names>
</au>
<au>
<second-name>Ryu</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Kim</second-name>
<first-names>Y M</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>84</volume>
<pages>1338</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1650915</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib10" num="10">
<authors>
<au>
<second-name>Zhao</second-name>
<first-names>Y G</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2003</year>
<art-title>Co-doped
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>0.5</sub>
<upright>Sr</upright>
<sub>0.5</sub>
<upright>TiO</upright>
<sub>3−δ</sub>
</math-text>
</inline-eqn>
: diluted magnetic oxide system with high Curie temperature</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>83</volume>
<pages>2199</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1610796</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib11" num="11">
<authors>
<au>
<second-name>Herranz</second-name>
<first-names>G</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2006</year>
<art-title>Co-doped (La, Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>(3−δ)</sub>
</math-text>
</inline-eqn>
: a high Curie temperature diluted magnetic system with large spin polarization</art-title>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>96</volume>
<pages>027207</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevLett.96.027207</cr_doi>
<cr_issn type="print">00319007</cr_issn>
<cr_issn type="electronic">10797114</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib12" num="12">
<authors>
<au>
<second-name>Tokura</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Taguchi</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Okada</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Fujishima</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Arima</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Kumagai</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Iye</second-name>
<first-names>Y</first-names>
</au>
</authors>
<year>1993</year>
<art-title>Filling dependence of electronic properties on the verge of metal–Mott-insulator transition in
<inline-eqn>
<math-text>
<upright>Sr</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>La</upright>
<sub>
<italic>x</italic>
</sub>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
</art-title>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>70</volume>
<pages>2126</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevLett.70.2126</cr_doi>
<cr_issn type="print">00319007</cr_issn>
<cr_issn type="electronic">10797114</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib13" num="13">
<authors>
<au>
<second-name>Schwartz</second-name>
<first-names>D A</first-names>
</au>
<au>
<second-name>Gamelin</second-name>
<first-names>D R</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor</art-title>
<jnl-title>Adv. Mater.</jnl-title>
<volume>16</volume>
<pages>2117</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1002/adma.200400456</cr_doi>
<cr_issn type="print">09359648</cr_issn>
<cr_issn type="electronic">15214095</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib14" num="14">
<authors>
<au>
<second-name>Khare</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Kappers</second-name>
<first-names>M J</first-names>
</au>
<au>
<second-name>Wei</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Blamire</second-name>
<first-names>M G</first-names>
</au>
<au>
<second-name>MacManus-Driscoll</second-name>
<first-names>J L</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Defect-induced ferromagnetism in co-doped ZnO</art-title>
<jnl-title>Adv. Mater.</jnl-title>
<volume>18</volume>
<pages>1449</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1002/adma.200502200</cr_doi>
<cr_issn type="print">09359648</cr_issn>
<cr_issn type="electronic">15214095</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib15" num="15">
<authors>
<au>
<second-name>Moritomo</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Higashi</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Matsuda</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Nakamura</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>1997</year>
<art-title>Spin-state transition in layered perovskite cobalt oxides:
<inline-eqn>
<math-text>
<upright>La</upright>
<sub>2−
<italic>x</italic>
</sub>
<upright>Sr</upright>
<sub>
<italic>x</italic>
</sub>
<upright>CoO</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
(
<inline-eqn>
<math-text>0.4<
<italic>x</italic>
<1.0</math-text>
</inline-eqn>
)</art-title>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>55</volume>
<pages>R14725</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevB.55.R14725</cr_doi>
<cr_issn type="print">10980121</cr_issn>
<cr_issn type="electronic">1550235X</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib16" num="16">
<authors>
<au>
<second-name>Herranz</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Basletic</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Bibes</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Ranchal</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Hamzic</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Tafra</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Bouzehouane</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Jacquet</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Contour</second-name>
<first-names>J P</first-names>
</au>
<au>
<second-name>Barthélémy</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Fert</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Full oxide heterostructure combining a high-
<inline-eqn>
<math-text>
<upright>T</upright>
<sub>
<upright>C</upright>
</sub>
</math-text>
</inline-eqn>
diluted ferromagnet with a high-mobility conductor</art-title>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>73</volume>
<pages>064403</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevB.73.064403</cr_doi>
<cr_issn type="print">10980121</cr_issn>
<cr_issn type="electronic">1550235X</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib17" num="17">
<authors>
<au>
<second-name>Fix</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>MacManus-Driscoll</second-name>
<first-names>J L</first-names>
</au>
<au>
<second-name>Blamire</second-name>
<first-names>M G</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Delta-doped
<inline-eqn>
<math-text>
<upright>LaAlO</upright>
<sub>3</sub>
/
<upright>SrTiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
interfaces</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>94</volume>
<pages>172101</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.3126445</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib18" num="18">
<authors>
<au>
<second-name>Vilquin</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Kanki</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Yanagida</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Tanaka</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Kawai</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Effect of Sr doping on
<inline-eqn>
<math-text>
<upright>LaTiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
thin films</art-title>
<jnl-title>Appl. Surf. Sci.</jnl-title>
<volume>244</volume>
<pages>494</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.apsusc.2004.10.107</cr_doi>
<cr_issn type="print">01694332</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib19" num="19">
<authors>
<au>
<second-name>Wang</second-name>
<first-names>Z</first-names>
</au>
<au>
<second-name>Wang</second-name>
<first-names>W</first-names>
</au>
<au>
<second-name>Tang</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Tung</second-name>
<first-names>L D</first-names>
</au>
<au>
<second-name>Spinu</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Zhou</second-name>
<first-names>W</first-names>
</au>
</authors>
<year>2003</year>
<art-title>Extraordinary Hall effect and ferromagnetism in Fe-doped reduced rutile</art-title>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>83</volume>
<pages>518</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1593825</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib20" num="20">
<authors>
<au>
<second-name>Shinde</second-name>
<first-names>S R</first-names>
</au>
<au>
<second-name>Ogale</second-name>
<first-names>S B</first-names>
</au>
<au>
<second-name>Higgins</second-name>
<first-names>J S</first-names>
</au>
<au>
<second-name>Zeng</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Millis</second-name>
<first-names>A J</first-names>
</au>
<au>
<second-name>Kulkarni</second-name>
<first-names>V N</first-names>
</au>
<au>
<second-name>Ramesh</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Greene</second-name>
<first-names>R L</first-names>
</au>
<au>
<second-name>Venkatesan</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>2−δ</sub>
</math-text>
</inline-eqn>
films</art-title>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>92</volume>
<pages>166601</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevLett.92.166601</cr_doi>
<cr_issn type="print">00319007</cr_issn>
<cr_issn type="electronic">10797114</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib21" num="21">
<authors>
<au>
<second-name>Zhang</second-name>
<first-names>S X</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2007</year>
<art-title>Magnetism and anomalous Hall effect in Co-(La,Sr)
<inline-eqn>
<math-text>
<upright>TiO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
</art-title>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>76</volume>
<pages>085323</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevB.76.085323</cr_doi>
<cr_issn type="print">10980121</cr_issn>
<cr_issn type="electronic">1550235X</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib22" num="22">
<authors>
<au>
<second-name>Ikonomov</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Stoychev</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Marinova</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2000</year>
<art-title>XPS and SEM characterization of electrodeposited transition metals on zirconia</art-title>
<jnl-title>Appl. Surf. Sci.</jnl-title>
<volume>161</volume>
<pages>94</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S0169-4332(00)00033-7</cr_doi>
<cr_issn type="print">01694332</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib23" num="23">
<authors>
<au>
<second-name>Petitto</second-name>
<first-names>S C</first-names>
</au>
<au>
<second-name>Marsh</second-name>
<first-names>E M</first-names>
</au>
<au>
<second-name>Carson</second-name>
<first-names>G A</first-names>
</au>
<au>
<second-name>Langell</second-name>
<first-names>M A</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Cobalt oxide surface chemistry: the interaction of CoO(100),
<inline-eqn>
<math-text>
<upright>Co</upright>
<sub>3</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
(110) and
<inline-eqn>
<math-text>
<upright>Co</upright>
<sub>3</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
(111) with oxygen and water</art-title>
<jnl-title>J. Mol. Catal.</jnl-title>
<volume>281</volume>
<pages>49</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.molcata.2007.08.023</cr_doi>
<cr_issn type="print">13811169</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib24" num="24">
<authors>
<au>
<second-name>Kim</second-name>
<first-names>J-G</first-names>
</au>
<au>
<second-name>Pugmire</second-name>
<first-names>D L</first-names>
</au>
<au>
<second-name>Battaglia</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Langell</second-name>
<first-names>M A</first-names>
</au>
</authors>
<year>2000</year>
<art-title>Analysis of the
<inline-eqn>
<math-text>
<upright>NiCo</upright>
<sub>2</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
spinel surface with Auger and x-ray photoelectron spectroscopy</art-title>
<jnl-title>Appl. Surf. Sci.</jnl-title>
<volume>165</volume>
<pages>70</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S0169-4332(00)00378-0</cr_doi>
<cr_issn type="print">01694332</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib25" num="25">
<authors>
<au>
<second-name>Tietze</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Gacic</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Schütz</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Jakob</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Brück</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Goering</second-name>
<first-names>E</first-names>
</au>
</authors>
<year>2008</year>
<art-title>XMCD studies on Co and Li doped ZnO magnetic semiconductors</art-title>
<jnl-title>New J. Phys.</jnl-title>
<volume>10</volume>
<pages>055009</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1088/1367-2630/10/5/055009</cr_doi>
<cr_issn type="electronic">13672630</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="nj316078bib26" num="26">
<authors>
<au>
<second-name>Barla</second-name>
<first-names>A</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2007</year>
<art-title>Paramagnetism of the Co sublattice in ferromagnetic
<inline-eqn>
<math-text>
<upright>Zn</upright>
<sub>1−
<italic>x</italic>
</sub>
<upright>Co</upright>
<sub>x</sub>
<upright>O</upright>
</math-text>
</inline-eqn>
films</art-title>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>76</volume>
<pages>125201</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevB.76.125201</cr_doi>
<cr_issn type="print">10980121</cr_issn>
<cr_issn type="electronic">1550235X</cr_issn>
</crossref>
</journal-ref>
</reference-list>
</references>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Ferromagnetism in Co-doped (La,Sr)TiO3</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Ferromagnetism in Co-doped (La,Sr)TiO3</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title>Ferromagnetism in Co-doped (La,Sr)TiO3</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Fix</namePart>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
<affiliation>Author to whom any correspondence should be addressed.</affiliation>
<affiliation>E-mail: tf255@cam.ac.uk</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Liberati</namePart>
<affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Aubriet</namePart>
<affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S-L</namePart>
<namePart type="family">Sahonta</namePart>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Bali</namePart>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Becker</namePart>
<affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Ruch</namePart>
<affiliation>Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, Esch/Alzette 4002, Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J L</namePart>
<namePart type="family">MacManus-Driscoll</namePart>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Arenholz</namePart>
<affiliation>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M G</namePart>
<namePart type="family">Blamire</namePart>
<affiliation>Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="paper">paper</genre>
<originInfo>
<publisher>IOP Publishing</publisher>
<dateIssued encoding="w3cdtf">2009</dateIssued>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>The origin of ferromagnetism in Co-doped (La,Sr)TiO3 epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.</abstract>
<relatedItem type="host">
<titleInfo>
<title>New Journal of Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>New J. Phys.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1367-2630</identifier>
<identifier type="eISSN">1367-2630</identifier>
<identifier type="PublisherID">nj</identifier>
<identifier type="CODEN">NJOPFM</identifier>
<identifier type="URL">stacks.iop.org/NJP</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>10</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">47B3277D0719A27C5EA8993221AA51D398C93271</identifier>
<identifier type="DOI">10.1088/1367-2630/11/7/073042</identifier>
<identifier type="articleID">316078</identifier>
<identifier type="articleNumber">073042</identifier>
<accessCondition type="use and reproduction" contentType="copyright">IOP Publishing and Deutsche Physikalische Gesellschaft</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>IOP Publishing and Deutsche Physikalische Gesellschaft</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/47B3277D0719A27C5EA8993221AA51D398C93271/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:47B3277D0719A27C5EA8993221AA51D398C93271
   |texte=   Ferromagnetism in Co-doped (La,Sr)TiO3
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024