Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression

Identifieur interne : 000987 ( Istex/Corpus ); précédent : 000986; suivant : 000988

The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression

Auteurs : Kimberly D. Dyer ; Helene F. Rosenberg

Source :

RBID : ISTEX:0B18735367CDB19F2E02DEADB26817942081ED52

Abstract

The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.

Url:
DOI: 10.1093/nar/gki250

Links to Exploration step

ISTEX:0B18735367CDB19F2E02DEADB26817942081ED52

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
<author>
<name sortKey="Dyer, Kimberly D" sort="Dyer, Kimberly D" uniqKey="Dyer K" first="Kimberly D." last="Dyer">Kimberly D. Dyer</name>
<affiliation>
<mods:affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rosenberg, Helene F" sort="Rosenberg, Helene F" uniqKey="Rosenberg H" first="Helene F." last="Rosenberg">Helene F. Rosenberg</name>
<affiliation>
<mods:affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0B18735367CDB19F2E02DEADB26817942081ED52</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1093/nar/gki250</idno>
<idno type="url">https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000987</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
<author>
<name sortKey="Dyer, Kimberly D" sort="Dyer, Kimberly D" uniqKey="Dyer K" first="Kimberly D." last="Dyer">Kimberly D. Dyer</name>
<affiliation>
<mods:affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rosenberg, Helene F" sort="Rosenberg, Helene F" uniqKey="Rosenberg H" first="Helene F." last="Rosenberg">Helene F. Rosenberg</name>
<affiliation>
<mods:affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Nucleic Acids Research</title>
<title level="j" type="abbrev">Nucl. Acids Res.</title>
<idno type="ISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2005">2005</date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1077">1077</biblScope>
<biblScope unit="page" to="1086">1086</biblScope>
</imprint>
<idno type="ISSN">0305-1048</idno>
</series>
<idno type="istex">0B18735367CDB19F2E02DEADB26817942081ED52</idno>
<idno type="DOI">10.1093/nar/gki250</idno>
<idno type="local">gki250</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-1048</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<author>
<json:item>
<name>Kimberly D. Dyer</name>
<affiliations>
<json:string>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</json:string>
<json:string>E-mail: kdyer@niaid.nih.gov</json:string>
</affiliations>
</json:item>
<json:item>
<name>Helene F. Rosenberg</name>
<affiliations>
<json:string>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>other</json:string>
</originalGenre>
<abstract>The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.</abstract>
<qualityIndicators>
<score>7.936</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 794 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1287</abstractCharCount>
<pdfWordCount>5885</pdfWordCount>
<pdfCharCount>36892</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>203</abstractWordCount>
</qualityIndicators>
<title>The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
<genre>
<json:string>other</json:string>
</genre>
<host>
<volume>33</volume>
<publisherId>
<json:string>nar</json:string>
</publisherId>
<pages>
<last>1086</last>
<first>1077</first>
</pages>
<issn>
<json:string>0305-1048</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1362-4962</json:string>
</eissn>
<title>Nucleic Acids Research</title>
</host>
<categories>
<wos>
<json:string>BIOCHEMISTRY & MOLECULAR BIOLOGY</json:string>
</wos>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1093/nar/gki250</json:string>
</doi>
<id>0B18735367CDB19F2E02DEADB26817942081ED52</id>
<score>0.26701373</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<p>© The Author 2005. Published by Oxford University Press. All rights reserved
 The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org</p>
</availability>
<date>2005</date>
</publicationStmt>
<notesStmt>
<note>*To whom correspondence should be addressed at 10 Center Drive MSC 1886, Building 10 Room 11C216, Bethesda, MD 20892-1886, USA. Tel: +1 301 402 429; Fax: +1 301 402 4369; Email: kdyer@niaid.nih.gov</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
<author xml:id="author-1">
<persName>
<forename type="first">Kimberly D.</forename>
<surname>Dyer</surname>
</persName>
<affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Helene F.</forename>
<surname>Rosenberg</surname>
</persName>
<affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Nucleic Acids Research</title>
<title level="j" type="abbrev">Nucl. Acids Res.</title>
<idno type="pISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2005"></date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1077">1077</biblScope>
<biblScope unit="page" to="1086">1086</biblScope>
</imprint>
</monogr>
<idno type="istex">0B18735367CDB19F2E02DEADB26817942081ED52</idno>
<idno type="DOI">10.1093/nar/gki250</idno>
<idno type="local">gki250</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2005">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-10-14">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="US-ASCII"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article xml:lang="en" article-type="other">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">nar</journal-id>
<journal-id journal-id-type="nlm-ta">Nucleic Acids Res</journal-id>
<journal-id journal-id-type="publisher-id">nar</journal-id>
<journal-title>Nucleic Acids Research</journal-title>
<abbrev-journal-title abbrev-type="publisher">Nucl. Acids Res.</abbrev-journal-title>
<issn pub-type="ppub">0305-1048</issn>
<issn pub-type="epub">1362-4962</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="other">gki250</article-id>
<article-id pub-id-type="doi">10.1093/nar/gki250</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The mouse
<italic>RNase 4</italic>
and
<italic>RNase 5/ang 1</italic>
locus utilizes dual promoters for tissue-specific expression</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Dyer</surname>
<given-names>Kimberly D.</given-names>
</name>
<xref rid="COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rosenberg</surname>
<given-names>Helene F.</given-names>
</name>
</contrib>
<aff> Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA </aff>
</contrib-group>
<author-notes>
<corresp id="COR1">
<sup>*</sup>
To whom correspondence should be addressed at 10 Center Drive MSC 1886, Building 10 Room 11C216, Bethesda, MD 20892-1886, USA. Tel: +1 301 402 429; Fax: +1 301 402 4369; Email:
<ext-link xlink:href="kdyer@niaid.nih.gov" ext-link-type="email">kdyer@niaid.nih.gov</ext-link>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<year>2005</year>
</pub-date>
<volume>33</volume>
<issue>3</issue>
<fpage>1077</fpage>
<lpage>1086</lpage>
<history>
<date date-type="accepted">
<day>25</day>
<month>1</month>
<year>2005</year>
</date>
<date date-type="received">
<day>19</day>
<month>11</month>
<year>2004</year>
</date>
<date date-type="rev-recd">
<day>25</day>
<month>1</month>
<year>2005</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author 2005. Published by Oxford University Press. All rights reserved
 The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact
<ext-link xlink:href="journals.permissions@oupjournals.org" ext-link-type="email">journals.permissions@oupjournals.org</ext-link>
</copyright-statement>
<copyright-year>2005</copyright-year>
<license license-type="open-access">
<p></p>
</license>
</permissions>
<abstract xml:lang="en">
<p>The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The
<italic>RNase 4</italic>
and
<italic>RNase 5/ang 1</italic>
shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays
<italic>in vitro</italic>
. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary,
<italic>RNase 4</italic>
and
<italic>RNase 5/ang 1</italic>
are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.</p>
</abstract>
<custom-meta-wrap>
<custom-meta>
<meta-name>hwp-legacy-fpage</meta-name>
<meta-value>1077</meta-value>
</custom-meta>
<custom-meta>
<meta-name>hwp-legacy-dochead</meta-name>
<meta-value>research-article</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kimberly D.</namePart>
<namePart type="family">Dyer</namePart>
<affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene F.</namePart>
<namePart type="family">Rosenberg</namePart>
<affiliation>Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="other" displayLabel="other"></genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2005</dateIssued>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.</abstract>
<note type="author-notes">*To whom correspondence should be addressed at 10 Center Drive MSC 1886, Building 10 Room 11C216, Bethesda, MD 20892-1886, USA. Tel: +1 301 402 429; Fax: +1 301 402 4369; Email: kdyer@niaid.nih.gov</note>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Nucl. Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0305-1048</identifier>
<identifier type="eISSN">1362-4962</identifier>
<identifier type="PublisherID">nar</identifier>
<identifier type="PublisherID-hwp">nar</identifier>
<identifier type="PublisherID-nlm-ta">Nucleic Acids Res</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1077</start>
<end>1086</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">0B18735367CDB19F2E02DEADB26817942081ED52</identifier>
<identifier type="DOI">10.1093/nar/gki250</identifier>
<identifier type="local">gki250</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© The Author 2005. Published by Oxford University Press. All rights reserved
 The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org</accessCondition>
<recordInfo>
<recordContentSource>OUP</recordContentSource>
</recordInfo>
</mods>
</metadata>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<extension>jpeg</extension>
<uri>https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/annexes/jpeg</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>image/gif</mimetype>
<extension>gif</extension>
<uri>https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/annexes/gif</uri>
</json:item>
</annexes>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">BIOCHEMISTRY & MOLECULAR BIOLOGY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
<json:item>
<type>refBibs</type>
<uri>https://api.istex.fr/document/0B18735367CDB19F2E02DEADB26817942081ED52/enrichments/refBibs</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000987 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000987 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0B18735367CDB19F2E02DEADB26817942081ED52
   |texte=   The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024