Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology

Identifieur interne : 000648 ( PascalFrancis/Curation ); précédent : 000647; suivant : 000649

Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology

Auteurs : Mouhamadou Dione [Canada] ; Frédéric Sirois [Canada] ; Charles-Henri Bonnard [Canada]

Source :

RBID : Pascal:11-0297332

Descripteurs français

English descriptors

Abstract

Planning the integration of a Superconducting Fault Current Limiter (SFCL) in an electric power network mainly consists in predicting the current limiting characteristics in any fault condition, in order to set the protection relays accordingly. Due to the very non linear behavior of the SFCL, modifications to the settings of existing protection relays are expected. To explore the potential changes, we used a Real-Time Simulation (RTS) methodology with Power-Hardware-In-the-Loop (PHIL) capabilities (i.e. circuit simulator coupled with power amplifiers for driving external physical power devices). The RTS-PHIL is a powerful approach that makes it possible to incorporate the actual transient reaction of the hardware under study without the need for developing a complicated numerical model, while the power system circuit, generally simpler in nature, can be purely simulated. In this project, the response of a commercial protection relay in the presence of a SFCL was investigated. Both the relay and a small scale shielded-core inductive limiter were coupled to the real time simulator (HYPERSIM) through single-phase linear power amplifiers and a variety of faults were applied. So far, this setup has allowed us to evaluate the impact of inserting a SFCL on overcurrent relays (OCR), in a simple radial distribution network. The results show that coordination has indeed to be slightly revised.
pA  
A01 01  1    @0 1051-8223
A03   1    @0 IEEE trans. appl. supercond.
A05       @2 21
A06       @2 3 @3 p. 2
A08 01  1  ENG  @1 Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology
A09 01  1  ENG  @1 The 2010 Applied Superconductivity Conference, Washington, DC, August 1-6, 2010
A11 01  1    @1 DIONE (Mouhamadou)
A11 02  1    @1 SIROIS (Frédéric)
A11 03  1    @1 BONNARD (Charles-Henri)
A14 01      @1 École Polytechnique de Montréal @2 Montréal, QC H3C 3A7 @3 CAN @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @1 2193-2196
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 22424 @5 354000190350062940
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 16 ref.
A47 01  1    @0 11-0297332
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 IEEE transactions on applied superconductivity
A66 01      @0 USA
C01 01    ENG  @0 Planning the integration of a Superconducting Fault Current Limiter (SFCL) in an electric power network mainly consists in predicting the current limiting characteristics in any fault condition, in order to set the protection relays accordingly. Due to the very non linear behavior of the SFCL, modifications to the settings of existing protection relays are expected. To explore the potential changes, we used a Real-Time Simulation (RTS) methodology with Power-Hardware-In-the-Loop (PHIL) capabilities (i.e. circuit simulator coupled with power amplifiers for driving external physical power devices). The RTS-PHIL is a powerful approach that makes it possible to incorporate the actual transient reaction of the hardware under study without the need for developing a complicated numerical model, while the power system circuit, generally simpler in nature, can be purely simulated. In this project, the response of a commercial protection relay in the presence of a SFCL was investigated. Both the relay and a small scale shielded-core inductive limiter were coupled to the real time simulator (HYPERSIM) through single-phase linear power amplifiers and a variety of faults were applied. So far, this setup has allowed us to evaluate the impact of inserting a SFCL on overcurrent relays (OCR), in a simple radial distribution network. The results show that coordination has indeed to be slightly revised.
C02 01  X    @0 001D05G01
C02 02  X    @0 001D03F11
C02 03  X    @0 001D05F
C02 04  X    @0 001D05I01B
C03 01  X  FRE  @0 Dispositif supraconducteur @5 01
C03 01  X  ENG  @0 Superconductor device @5 01
C03 01  X  SPA  @0 Dispositivo supraconductor @5 01
C03 02  3  FRE  @0 Limiteur courant défaut @5 02
C03 02  3  ENG  @0 Fault current limiters @5 02
C03 03  3  FRE  @0 Protection réseau électrique @5 03
C03 03  3  ENG  @0 Power system protection @5 03
C03 04  X  FRE  @0 Planification @5 04
C03 04  X  ENG  @0 Planning @5 04
C03 04  X  SPA  @0 Planificación @5 04
C03 05  X  FRE  @0 Réseau électrique @5 05
C03 05  X  ENG  @0 Electrical network @5 05
C03 05  X  SPA  @0 Red eléctrica @5 05
C03 06  X  FRE  @0 Puissance électrique @5 06
C03 06  X  ENG  @0 Electric power @5 06
C03 06  X  SPA  @0 Potencia eléctrica @5 06
C03 07  X  FRE  @0 Limiteur courant @5 07
C03 07  X  ENG  @0 Current limiter @5 07
C03 07  X  SPA  @0 Limitador corriente @5 07
C03 08  X  FRE  @0 Relais @5 08
C03 08  X  ENG  @0 Relay @5 08
C03 08  X  SPA  @0 Relé @5 08
C03 09  X  FRE  @0 Temps occupation @5 09
C03 09  X  ENG  @0 Occupation time @5 09
C03 09  X  SPA  @0 Tiempo ocupación @5 09
C03 10  X  FRE  @0 Système temps réel @5 10
C03 10  X  ENG  @0 Real time system @5 10
C03 10  X  SPA  @0 Sistema tiempo real @5 10
C03 11  X  FRE  @0 Simulation HIL @5 11
C03 11  X  ENG  @0 Hardware in the loop simulation @5 11
C03 11  X  SPA  @0 Simulación HIL @5 11
C03 12  3  FRE  @0 Simulation circuit @5 12
C03 12  3  ENG  @0 Circuit simulation @5 12
C03 13  X  FRE  @0 Amplificateur puissance @5 13
C03 13  X  ENG  @0 Power amplifier @5 13
C03 13  X  SPA  @0 Amplificador potencia @5 13
C03 14  X  FRE  @0 Dispositif puissance @5 14
C03 14  X  ENG  @0 Power device @5 14
C03 14  X  SPA  @0 Dispositivo potencia @5 14
C03 15  X  FRE  @0 Matériel informatique @5 15
C03 15  X  ENG  @0 Computer hardware @5 15
C03 15  X  SPA  @0 Hardware @5 15
C03 16  X  FRE  @0 Circuit puissance @5 16
C03 16  X  ENG  @0 Power circuit @5 16
C03 16  X  SPA  @0 Circuito potencia @5 16
C03 17  X  FRE  @0 Structure petite échelle @5 17
C03 17  X  ENG  @0 Small scale structure @5 17
C03 17  X  SPA  @0 Estructura pequeña escala @5 17
C03 18  X  FRE  @0 Simulateur @5 18
C03 18  X  ENG  @0 Simulator @5 18
C03 18  X  SPA  @0 Simulador @5 18
C03 19  X  FRE  @0 Amplification linéaire @5 19
C03 19  X  ENG  @0 Linear amplification @5 19
C03 19  X  SPA  @0 Amplificación lineal @5 19
C03 20  X  FRE  @0 Surintensité @5 20
C03 20  X  ENG  @0 Overcurrent @5 20
C03 20  X  SPA  @0 Sobreintensidad @5 20
C03 21  X  FRE  @0 Reconnaissance optique caractère @5 21
C03 21  X  ENG  @0 Optical character recognition @5 21
C03 21  X  SPA  @0 Reconocimento óptico de caracteres @5 21
C03 22  X  FRE  @0 Electronique puissance @5 46
C03 22  X  ENG  @0 Power electronics @5 46
C03 22  X  SPA  @0 Electrónica potencia @5 46
C03 23  X  FRE  @0 Prévention dommage @5 47
C03 23  X  ENG  @0 Damage prevention @5 47
C03 23  X  SPA  @0 Prevención daño @5 47
N21       @1 206
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 The Applied Superconductivity Conference (ASC 2010) @3 Washington USA @4 2010-08-01

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0297332

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology</title>
<author>
<name sortKey="Dione, Mouhamadou" sort="Dione, Mouhamadou" uniqKey="Dione M" first="Mouhamadou" last="Dione">Mouhamadou Dione</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Sirois, Frederic" sort="Sirois, Frederic" uniqKey="Sirois F" first="Frédéric" last="Sirois">Frédéric Sirois</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Bonnard, Charles Henri" sort="Bonnard, Charles Henri" uniqKey="Bonnard C" first="Charles-Henri" last="Bonnard">Charles-Henri Bonnard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0297332</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0297332 INIST</idno>
<idno type="RBID">Pascal:11-0297332</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000125</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000648</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology</title>
<author>
<name sortKey="Dione, Mouhamadou" sort="Dione, Mouhamadou" uniqKey="Dione M" first="Mouhamadou" last="Dione">Mouhamadou Dione</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Sirois, Frederic" sort="Sirois, Frederic" uniqKey="Sirois F" first="Frédéric" last="Sirois">Frédéric Sirois</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Bonnard, Charles Henri" sort="Bonnard, Charles Henri" uniqKey="Bonnard C" first="Charles-Henri" last="Bonnard">Charles-Henri Bonnard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on applied superconductivity</title>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<idno type="ISSN">1051-8223</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on applied superconductivity</title>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<idno type="ISSN">1051-8223</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Circuit simulation</term>
<term>Computer hardware</term>
<term>Current limiter</term>
<term>Damage prevention</term>
<term>Electric power</term>
<term>Electrical network</term>
<term>Fault current limiters</term>
<term>Hardware in the loop simulation</term>
<term>Linear amplification</term>
<term>Occupation time</term>
<term>Optical character recognition</term>
<term>Overcurrent</term>
<term>Planning</term>
<term>Power amplifier</term>
<term>Power circuit</term>
<term>Power device</term>
<term>Power electronics</term>
<term>Power system protection</term>
<term>Real time system</term>
<term>Relay</term>
<term>Simulator</term>
<term>Small scale structure</term>
<term>Superconductor device</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dispositif supraconducteur</term>
<term>Limiteur courant défaut</term>
<term>Protection réseau électrique</term>
<term>Planification</term>
<term>Réseau électrique</term>
<term>Puissance électrique</term>
<term>Limiteur courant</term>
<term>Relais</term>
<term>Temps occupation</term>
<term>Système temps réel</term>
<term>Simulation HIL</term>
<term>Simulation circuit</term>
<term>Amplificateur puissance</term>
<term>Dispositif puissance</term>
<term>Matériel informatique</term>
<term>Circuit puissance</term>
<term>Structure petite échelle</term>
<term>Simulateur</term>
<term>Amplification linéaire</term>
<term>Surintensité</term>
<term>Reconnaissance optique caractère</term>
<term>Electronique puissance</term>
<term>Prévention dommage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Planning the integration of a Superconducting Fault Current Limiter (SFCL) in an electric power network mainly consists in predicting the current limiting characteristics in any fault condition, in order to set the protection relays accordingly. Due to the very non linear behavior of the SFCL, modifications to the settings of existing protection relays are expected. To explore the potential changes, we used a Real-Time Simulation (RTS) methodology with Power-Hardware-In-the-Loop (PHIL) capabilities (i.e. circuit simulator coupled with power amplifiers for driving external physical power devices). The RTS-PHIL is a powerful approach that makes it possible to incorporate the actual transient reaction of the hardware under study without the need for developing a complicated numerical model, while the power system circuit, generally simpler in nature, can be purely simulated. In this project, the response of a commercial protection relay in the presence of a SFCL was investigated. Both the relay and a small scale shielded-core inductive limiter were coupled to the real time simulator (HYPERSIM) through single-phase linear power amplifiers and a variety of faults were applied. So far, this setup has allowed us to evaluate the impact of inserting a SFCL on overcurrent relays (OCR), in a simple radial distribution network. The results show that coordination has indeed to be slightly revised.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1051-8223</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. appl. supercond.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>3</s2>
<s3>p. 2</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 2010 Applied Superconductivity Conference, Washington, DC, August 1-6, 2010</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DIONE (Mouhamadou)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIROIS (Frédéric)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BONNARD (Charles-Henri)</s1>
</fA11>
<fA14 i1="01">
<s1>École Polytechnique de Montréal</s1>
<s2>Montréal, QC H3C 3A7</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>2193-2196</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22424</s2>
<s5>354000190350062940</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0297332</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on applied superconductivity</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Planning the integration of a Superconducting Fault Current Limiter (SFCL) in an electric power network mainly consists in predicting the current limiting characteristics in any fault condition, in order to set the protection relays accordingly. Due to the very non linear behavior of the SFCL, modifications to the settings of existing protection relays are expected. To explore the potential changes, we used a Real-Time Simulation (RTS) methodology with Power-Hardware-In-the-Loop (PHIL) capabilities (i.e. circuit simulator coupled with power amplifiers for driving external physical power devices). The RTS-PHIL is a powerful approach that makes it possible to incorporate the actual transient reaction of the hardware under study without the need for developing a complicated numerical model, while the power system circuit, generally simpler in nature, can be purely simulated. In this project, the response of a commercial protection relay in the presence of a SFCL was investigated. Both the relay and a small scale shielded-core inductive limiter were coupled to the real time simulator (HYPERSIM) through single-phase linear power amplifiers and a variety of faults were applied. So far, this setup has allowed us to evaluate the impact of inserting a SFCL on overcurrent relays (OCR), in a simple radial distribution network. The results show that coordination has indeed to be slightly revised.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05G01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F11</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05F</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D05I01B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dispositif supraconducteur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Superconductor device</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Dispositivo supraconductor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Limiteur courant défaut</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Fault current limiters</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Protection réseau électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Power system protection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Planification</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Planning</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Planificación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réseau électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrical network</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Red eléctrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Puissance électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electric power</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Potencia eléctrica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Limiteur courant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Current limiter</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Limitador corriente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relais</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Relay</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relé</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Temps occupation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Occupation time</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tiempo ocupación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Système temps réel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Real time system</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sistema tiempo real</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Simulation HIL</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Hardware in the loop simulation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Simulación HIL</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Simulation circuit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Circuit simulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Amplificateur puissance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Power amplifier</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Amplificador potencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dispositif puissance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Power device</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Dispositivo potencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Matériel informatique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Computer hardware</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Hardware</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Circuit puissance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Power circuit</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Circuito potencia</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Structure petite échelle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Small scale structure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estructura pequeña escala</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Simulateur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Simulator</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Simulador</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Amplification linéaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Linear amplification</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Amplificación lineal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Surintensité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Overcurrent</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Sobreintensidad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Reconnaissance optique caractère</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Optical character recognition</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Reconocimento óptico de caracteres</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Electronique puissance</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Power electronics</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Electrónica potencia</s0>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Prévention dommage</s0>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Damage prevention</s0>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Prevención daño</s0>
<s5>47</s5>
</fC03>
<fN21>
<s1>206</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>The Applied Superconductivity Conference (ASC 2010)</s1>
<s3>Washington USA</s3>
<s4>2010-08-01</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000648 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000648 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0297332
   |texte=   Evaluation of the Impact of Superconducting Fault Current Limiters on Power System Network Protections Using a RTS-PHIL Methodology
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024