Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure

Identifieur interne : 000621 ( PascalFrancis/Curation ); précédent : 000620; suivant : 000622

Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure

Auteurs : Gyujong Bae [Corée du Sud] ; Joongmyeon Bae [Corée du Sud] ; Pattaraporn Kim-Lohsoontorn [Corée du Sud, Thaïlande] ; Jihoon Jeong [Corée du Sud]

Source :

RBID : Pascal:11-0087936

Descripteurs français

English descriptors

Abstract

The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM-YSZ)) coupled with n-C4H10 steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C1C4), but also by the CO/H2 gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C1C4 lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C4H10 reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/ CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm-2.
pA  
A01 01  1    @0 0360-3199
A02 01      @0 IJHEDX
A03   1    @0 Int. j. hydrogen energy
A05       @2 35
A06       @2 22
A08 01  1  ENG  @1 Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure
A11 01  1    @1 BAE (Gyujong)
A11 02  1    @1 BAE (Joongmyeon)
A11 03  1    @1 KIM-LOHSOONTORN (Pattaraporn)
A11 04  1    @1 JEONG (Jihoon)
A14 01      @1 Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST) @2 Daejeon 305-701 @3 KOR @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong @2 Yuseong-gu, Daejeon 305-701 @3 KOR @Z 2 aut. @Z 3 aut.
A14 03      @1 Department of Chemical Engineering, Mahidol University @2 Nakorn Pathom 73170 @3 THA @Z 3 aut.
A20       @1 12346-12358
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 17522 @5 354000193431450230
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 34 ref.
A47 01  1    @0 11-0087936
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal of hydrogen energy
A66 01      @0 GBR
C01 01    ENG  @0 The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM-YSZ)) coupled with n-C4H10 steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C1C4), but also by the CO/H2 gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C1C4 lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C4H10 reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/ CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm-2.
C02 01  X    @0 001D06B06B
C02 02  X    @0 230
C03 01  X  FRE  @0 Performance @5 05
C03 01  X  ENG  @0 Performance @5 05
C03 01  X  SPA  @0 Rendimiento @5 05
C03 02  X  FRE  @0 Pile combustible @5 06
C03 02  X  ENG  @0 Fuel cell @5 06
C03 02  X  SPA  @0 Pila combustión @5 06
C03 03  X  FRE  @0 Pile combustible oxyde solide @5 07
C03 03  X  ENG  @0 Solid oxide fuel cell @5 07
C03 03  X  SPA  @0 Pila combustible oxido sólido @5 07
C03 04  X  FRE  @0 Anode @5 08
C03 04  X  ENG  @0 Anode @5 08
C03 04  X  SPA  @0 Anodo @5 08
C03 05  X  FRE  @0 Nickel @2 NC @2 FX @5 09
C03 05  X  ENG  @0 Nickel @2 NC @2 FX @5 09
C03 05  X  SPA  @0 Niquel @2 NC @2 FX @5 09
C03 06  X  FRE  @0 Zircone @5 10
C03 06  X  ENG  @0 Zirconia @5 10
C03 06  X  SPA  @0 Zircona @5 10
C03 07  X  FRE  @0 Oxyde de zirconium @5 11
C03 07  X  ENG  @0 Zirconium oxide @5 11
C03 07  X  SPA  @0 Zirconio óxido @5 11
C03 08  X  FRE  @0 Lanthane @2 NC @5 12
C03 08  X  ENG  @0 Lanthanum @2 NC @5 12
C03 08  X  SPA  @0 Lantano @2 NC @5 12
C03 09  X  FRE  @0 Reformage vapeur @5 13
C03 09  X  ENG  @0 Steam reforming @5 13
C03 09  X  SPA  @0 Reformación vapor @5 13
C03 10  X  FRE  @0 Oxydation partielle @5 14
C03 10  X  ENG  @0 Partial oxidation @5 14
C03 10  X  SPA  @0 Oxidación parcial @5 14
C03 11  X  FRE  @0 Vapeur eau @5 15
C03 11  X  ENG  @0 Water vapor @5 15
C03 11  X  SPA  @0 Vapor agua @5 15
C03 12  X  FRE  @0 Hydrocarbure @2 FX @5 16
C03 12  X  ENG  @0 Hydrocarbon @2 FX @5 16
C03 12  X  SPA  @0 Hidrocarburo @2 FX @5 16
C03 13  X  FRE  @0 Mélange gaz @5 17
C03 13  X  ENG  @0 Gas mixture @5 17
C03 13  X  SPA  @0 Mezcla gas @5 17
C03 14  X  FRE  @0 Conductivité électrique @5 18
C03 14  X  ENG  @0 Electrical conductivity @5 18
C03 14  X  SPA  @0 Conductividad eléctrica @5 18
C03 15  X  FRE  @0 Oxyde de cérium @5 19
C03 15  X  ENG  @0 Cerium oxide @5 19
C03 15  X  SPA  @0 Cerio óxido @5 19
C03 16  X  FRE  @0 Cobalt @2 NC @5 20
C03 16  X  ENG  @0 Cobalt @2 NC @5 20
C03 16  X  SPA  @0 Cobalto @2 NC @5 20
C03 17  X  FRE  @0 Ferrite @5 21
C03 17  X  ENG  @0 Ferrite @5 21
C03 17  X  SPA  @0 Ferrita @5 21
C03 18  X  FRE  @0 Samarium @2 NC @5 22
C03 18  X  ENG  @0 Samarium @2 NC @5 22
C03 18  X  SPA  @0 Samario @2 NC @5 22
C03 19  X  FRE  @0 Catalyseur @5 23
C03 19  X  ENG  @0 Catalyst @5 23
C03 19  X  SPA  @0 Catalizador @5 23
C03 20  X  FRE  @0 Rhodium @2 NC @5 24
C03 20  X  ENG  @0 Rhodium @2 NC @5 24
C03 20  X  SPA  @0 Rodio @2 NC @5 24
C03 21  3  FRE  @0 Processus reformage autothermique @5 25
C03 21  3  ENG  @0 Autothermal reformer processes @5 25
C03 22  X  FRE  @0 Hydrogène @2 NC @5 26
C03 22  X  ENG  @0 Hydrogen @2 NC @5 26
C03 22  X  SPA  @0 Hidrógeno @2 NC @5 26
N21       @1 059
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0087936

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Performance of SOFC coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
autothermal reformer: Carbon deposition and development of anode structure</title>
<author>
<name sortKey="Bae, Gyujong" sort="Bae, Gyujong" uniqKey="Bae G" first="Gyujong" last="Bae">Gyujong Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
</author>
<author>
<name sortKey="Bae, Joongmyeon" sort="Bae, Joongmyeon" uniqKey="Bae J" first="Joongmyeon" last="Bae">Joongmyeon Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
</author>
<author>
<name sortKey="Kim Lohsoontorn, Pattaraporn" sort="Kim Lohsoontorn, Pattaraporn" uniqKey="Kim Lohsoontorn P" first="Pattaraporn" last="Kim-Lohsoontorn">Pattaraporn Kim-Lohsoontorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering, Mahidol University</s1>
<s2>Nakorn Pathom 73170</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Jihoon" sort="Jeong, Jihoon" uniqKey="Jeong J" first="Jihoon" last="Jeong">Jihoon Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0087936</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0087936 INIST</idno>
<idno type="RBID">Pascal:11-0087936</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000152</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000621</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Performance of SOFC coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
autothermal reformer: Carbon deposition and development of anode structure</title>
<author>
<name sortKey="Bae, Gyujong" sort="Bae, Gyujong" uniqKey="Bae G" first="Gyujong" last="Bae">Gyujong Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
</author>
<author>
<name sortKey="Bae, Joongmyeon" sort="Bae, Joongmyeon" uniqKey="Bae J" first="Joongmyeon" last="Bae">Joongmyeon Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
</author>
<author>
<name sortKey="Kim Lohsoontorn, Pattaraporn" sort="Kim Lohsoontorn, Pattaraporn" uniqKey="Kim Lohsoontorn P" first="Pattaraporn" last="Kim-Lohsoontorn">Pattaraporn Kim-Lohsoontorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering, Mahidol University</s1>
<s2>Nakorn Pathom 73170</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Jihoon" sort="Jeong, Jihoon" uniqKey="Jeong J" first="Jihoon" last="Jeong">Jihoon Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Autothermal reformer processes</term>
<term>Catalyst</term>
<term>Cerium oxide</term>
<term>Cobalt</term>
<term>Electrical conductivity</term>
<term>Ferrite</term>
<term>Fuel cell</term>
<term>Gas mixture</term>
<term>Hydrocarbon</term>
<term>Hydrogen</term>
<term>Lanthanum</term>
<term>Nickel</term>
<term>Partial oxidation</term>
<term>Performance</term>
<term>Rhodium</term>
<term>Samarium</term>
<term>Solid oxide fuel cell</term>
<term>Steam reforming</term>
<term>Water vapor</term>
<term>Zirconia</term>
<term>Zirconium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Performance</term>
<term>Pile combustible</term>
<term>Pile combustible oxyde solide</term>
<term>Anode</term>
<term>Nickel</term>
<term>Zircone</term>
<term>Oxyde de zirconium</term>
<term>Lanthane</term>
<term>Reformage vapeur</term>
<term>Oxydation partielle</term>
<term>Vapeur eau</term>
<term>Hydrocarbure</term>
<term>Mélange gaz</term>
<term>Conductivité électrique</term>
<term>Oxyde de cérium</term>
<term>Cobalt</term>
<term>Ferrite</term>
<term>Samarium</term>
<term>Catalyseur</term>
<term>Rhodium</term>
<term>Processus reformage autothermique</term>
<term>Hydrogène</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Nickel</term>
<term>Hydrocarbure</term>
<term>Cobalt</term>
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM-YSZ)) coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C
<sub>1</sub>
C
<sub>4</sub>
), but also by the CO/H
<sub>2</sub>
gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C
<sub>1</sub>
C
<sub>4</sub>
lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C
<sub>4</sub>
H
<sub>10</sub>
reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/ CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm
<sup>-2</sup>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0360-3199</s0>
</fA01>
<fA02 i1="01">
<s0>IJHEDX</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. hydrogen energy</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Performance of SOFC coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
autothermal reformer: Carbon deposition and development of anode structure</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BAE (Gyujong)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BAE (Joongmyeon)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIM-LOHSOONTORN (Pattaraporn)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JEONG (Jihoon)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemical Engineering, Mahidol University</s1>
<s2>Nakorn Pathom 73170</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>12346-12358</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17522</s2>
<s5>354000193431450230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0087936</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of hydrogen energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM-YSZ)) coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C
<sub>1</sub>
C
<sub>4</sub>
), but also by the CO/H
<sub>2</sub>
gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C
<sub>1</sub>
C
<sub>4</sub>
lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C
<sub>4</sub>
H
<sub>10</sub>
reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/ CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm
<sup>-2</sup>
.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06B06B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pile combustible</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Fuel cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Pila combustión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pile combustible oxyde solide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solid oxide fuel cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pila combustible oxido sólido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Anode</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Anode</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Niquel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Zircone</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Zirconia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Zircona</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde de zirconium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Zirconium oxide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Zirconio óxido</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Lanthane</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Lanthanum</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Lantano</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Reformage vapeur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Steam reforming</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Reformación vapor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxydation partielle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Partial oxidation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Oxidación parcial</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Vapeur eau</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Water vapor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Vapor agua</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Hydrocarbure</s0>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Hydrocarbon</s0>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Hidrocarburo</s0>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Mélange gaz</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Gas mixture</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Mezcla gas</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de cérium</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Cerium oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cerio óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cobalto</s0>
<s2>NC</s2>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Ferrite</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Ferrite</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Ferrita</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Samarium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Samarium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Samario</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Catalyseur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Catalyst</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Catalizador</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Rhodium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Rhodium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Rodio</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Processus reformage autothermique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Autothermal reformer processes</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fN21>
<s1>059</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000621 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000621 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0087936
   |texte=   Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024