Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ocular counterrolling induced by centrifugation during orbital space flight

Identifieur interne : 000089 ( PascalFrancis/Curation ); précédent : 000088; suivant : 000090

Ocular counterrolling induced by centrifugation during orbital space flight

Auteurs : Steven T. Moore [États-Unis] ; Gilles Clement [France] ; Theodore Raphan [États-Unis] ; Bernard Cohen [États-Unis]

Source :

RBID : Pascal:01-0429089

Descripteurs français

English descriptors

Abstract

During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural centripetal accelerations (Gy centrifugation) of 0.5g and 1g during rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear out or right-ear out, facing or back to motion. Binocular eye movements were measured in three dimensions using a video technique. On Earth, tangential centrifugation that produces lg of interaural linear acceleration combines with gravity to tilt the gravitoinertial acceleration (GIA) vector 45° in the roll plane relative to the head vertical, generating a summed vector of 1.4g. Before flight, this elicited mean ocular counterrolling (OCR) of 5.7°. Due to the relative absence of gravity during flight, there was no linear acceleration along the dorsoventral axis of the head. As a result, during in-flight centrifugation, gravitoinertial acceleration was strictly aligned with the centripetal acceleration along the interaural axis. There was a small but significant decrease (mean 10%) in the magnitude of OCR in space (5.1°). The magnitude of OCR during postflight 1g centrifugation was not significantly different from preflight OCR (5.9°). Findings were similar for 0.5g centrifugation, but the OCR magnitude was approximately 60% of that induced by centrifugation at 1g. OCR during pre- and postflight static tilt was not significantly different and was always less than OCR elicited by centrifugation on Earth for an equivalent interaural linear acceleration. In contrast, there was no difference between the OCR generated by in-flight centrifugation and by static tilt on Earth at equivalent interaural linear accelerations. These data support the following conclusions: (1) OCR is generated predominantly in response to interaural linear acceleration; (2) the increased OCR during centrifugation on Earth is a response to the head dorsoventral 1g linear acceleration component, which was absent in microgravity. The dorsoventral linear acceleration could have activated either the otoliths or body-tilt receptors that responded to the larger GIA magnitude (1.4g), to generate the increased OCR during centrifugation on Earth. A striking finding was that magnitude of OCR was maintained throughout and after flight. This is in contrast to most previous postflight OCR studies, which have generally registered decreases in OCR. We postulate that intermittent exposure to artificial gravity, in the form of the centripetal acceleration experienced during centrifugation, acted as a countermeasure to deconditioning of this otolith-ocular orienting reflex during the 16-day mission.
pA  
A01 01  1    @0 0014-4819
A02 01      @0 EXBRAP
A03   1    @0 Exp. brain res.
A05       @2 137
A06       @2 3-4
A08 01  1  ENG  @1 Ocular counterrolling induced by centrifugation during orbital space flight
A11 01  1    @1 MOORE (Steven T.)
A11 02  1    @1 CLEMENT (Gilles)
A11 03  1    @1 RAPHAN (Theodore)
A11 04  1    @1 COHEN (Bernard)
A14 01      @1 Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St. @2 New York, NY 10029 @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Department of Computer and Information Science, Brooklyn College @2 Brooklyn, N.Y. @3 USA @Z 1 aut. @Z 3 aut.
A14 03      @1 Centre de Recherche Cerveau et Cognition, CNRS/UPS @2 Toulouse @3 FRA @Z 2 aut.
A14 04      @1 Department of Physiology and Biophysics, Mount Sinai School of Medicine @2 New York @3 USA @Z 4 aut.
A20       @1 323-335
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 12535 @5 354000095137310060
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 01-0429089
A60       @1 P
A61       @0 A
A64 01  1    @0 Experimental brain research
A66 01      @0 DEU
C01 01    ENG  @0 During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural centripetal accelerations (Gy centrifugation) of 0.5g and 1g during rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear out or right-ear out, facing or back to motion. Binocular eye movements were measured in three dimensions using a video technique. On Earth, tangential centrifugation that produces lg of interaural linear acceleration combines with gravity to tilt the gravitoinertial acceleration (GIA) vector 45° in the roll plane relative to the head vertical, generating a summed vector of 1.4g. Before flight, this elicited mean ocular counterrolling (OCR) of 5.7°. Due to the relative absence of gravity during flight, there was no linear acceleration along the dorsoventral axis of the head. As a result, during in-flight centrifugation, gravitoinertial acceleration was strictly aligned with the centripetal acceleration along the interaural axis. There was a small but significant decrease (mean 10%) in the magnitude of OCR in space (5.1°). The magnitude of OCR during postflight 1g centrifugation was not significantly different from preflight OCR (5.9°). Findings were similar for 0.5g centrifugation, but the OCR magnitude was approximately 60% of that induced by centrifugation at 1g. OCR during pre- and postflight static tilt was not significantly different and was always less than OCR elicited by centrifugation on Earth for an equivalent interaural linear acceleration. In contrast, there was no difference between the OCR generated by in-flight centrifugation and by static tilt on Earth at equivalent interaural linear accelerations. These data support the following conclusions: (1) OCR is generated predominantly in response to interaural linear acceleration; (2) the increased OCR during centrifugation on Earth is a response to the head dorsoventral 1g linear acceleration component, which was absent in microgravity. The dorsoventral linear acceleration could have activated either the otoliths or body-tilt receptors that responded to the larger GIA magnitude (1.4g), to generate the increased OCR during centrifugation on Earth. A striking finding was that magnitude of OCR was maintained throughout and after flight. This is in contrast to most previous postflight OCR studies, which have generally registered decreases in OCR. We postulate that intermittent exposure to artificial gravity, in the form of the centripetal acceleration experienced during centrifugation, acted as a countermeasure to deconditioning of this otolith-ocular orienting reflex during the 16-day mission.
C02 01  X    @0 002B29C02
C03 01  X  FRE  @0 Vol spatial @5 01
C03 01  X  ENG  @0 Space flight @5 01
C03 01  X  SPA  @0 Vuelo espacial @5 01
C03 02  X  FRE  @0 Astronaute @5 02
C03 02  X  ENG  @0 Astronaut @5 02
C03 02  X  SPA  @0 Astronauta @5 02
C03 03  X  FRE  @0 Accélération @5 03
C03 03  X  ENG  @0 Acceleration @5 03
C03 03  X  SPA  @0 Aceleración @5 03
C03 04  X  FRE  @0 Rotation @5 04
C03 04  X  ENG  @0 Rotation @5 04
C03 04  X  SPA  @0 Rotación @5 04
C03 05  X  FRE  @0 Vision binoculaire @5 05
C03 05  X  ENG  @0 Binocular vision @5 05
C03 05  X  SPA  @0 Visión binocular @5 05
C03 06  X  FRE  @0 Mouvement oculaire @5 06
C03 06  X  ENG  @0 Eye movement @5 06
C03 06  X  SPA  @0 Movimiento ocular @5 06
C03 07  X  FRE  @0 Microgravité @5 07
C03 07  X  ENG  @0 Microgravity @5 07
C03 07  X  SPA  @0 Microgravidez @5 07
C03 08  X  FRE  @0 Inclinaison @5 08
C03 08  X  ENG  @0 Tilt @5 08
C03 08  X  SPA  @0 Inclinación @5 08
C03 09  X  FRE  @0 Otolithe @5 11
C03 09  X  ENG  @0 Otolith @5 11
C03 09  X  SPA  @0 Otolito @5 11
C03 10  X  FRE  @0 Réflexe vestibulooculaire @5 13
C03 10  X  ENG  @0 Vestibuloocular reflex @5 13
C03 10  X  SPA  @0 Reflejo vestibuloocular @5 13
C03 11  X  FRE  @0 Homme @5 54
C03 11  X  ENG  @0 Human @5 54
C03 11  X  SPA  @0 Hombre @5 54
C07 01  X  FRE  @0 Système vestibulaire @5 20
C07 01  X  ENG  @0 Vestibular system @5 20
C07 01  X  SPA  @0 Sistema vestibular @5 20
N21       @1 302

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0429089

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ocular counterrolling induced by centrifugation during orbital space flight</title>
<author>
<name sortKey="Moore, Steven T" sort="Moore, Steven T" uniqKey="Moore S" first="Steven T." last="Moore">Steven T. Moore</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Computer and Information Science, Brooklyn College</s1>
<s2>Brooklyn, N.Y.</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Clement, Gilles" sort="Clement, Gilles" uniqKey="Clement G" first="Gilles" last="Clement">Gilles Clement</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre de Recherche Cerveau et Cognition, CNRS/UPS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Raphan, Theodore" sort="Raphan, Theodore" uniqKey="Raphan T" first="Theodore" last="Raphan">Theodore Raphan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Computer and Information Science, Brooklyn College</s1>
<s2>Brooklyn, N.Y.</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Bernard" sort="Cohen, Bernard" uniqKey="Cohen B" first="Bernard" last="Cohen">Bernard Cohen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physiology and Biophysics, Mount Sinai School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0429089</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0429089 INIST</idno>
<idno type="RBID">Pascal:01-0429089</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000704</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000089</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ocular counterrolling induced by centrifugation during orbital space flight</title>
<author>
<name sortKey="Moore, Steven T" sort="Moore, Steven T" uniqKey="Moore S" first="Steven T." last="Moore">Steven T. Moore</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Computer and Information Science, Brooklyn College</s1>
<s2>Brooklyn, N.Y.</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Clement, Gilles" sort="Clement, Gilles" uniqKey="Clement G" first="Gilles" last="Clement">Gilles Clement</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre de Recherche Cerveau et Cognition, CNRS/UPS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Raphan, Theodore" sort="Raphan, Theodore" uniqKey="Raphan T" first="Theodore" last="Raphan">Theodore Raphan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Computer and Information Science, Brooklyn College</s1>
<s2>Brooklyn, N.Y.</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Bernard" sort="Cohen, Bernard" uniqKey="Cohen B" first="Bernard" last="Cohen">Bernard Cohen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physiology and Biophysics, Mount Sinai School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceleration</term>
<term>Astronaut</term>
<term>Binocular vision</term>
<term>Eye movement</term>
<term>Human</term>
<term>Microgravity</term>
<term>Otolith</term>
<term>Rotation</term>
<term>Space flight</term>
<term>Tilt</term>
<term>Vestibuloocular reflex</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vol spatial</term>
<term>Astronaute</term>
<term>Accélération</term>
<term>Rotation</term>
<term>Vision binoculaire</term>
<term>Mouvement oculaire</term>
<term>Microgravité</term>
<term>Inclinaison</term>
<term>Otolithe</term>
<term>Réflexe vestibulooculaire</term>
<term>Homme</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural centripetal accelerations (Gy centrifugation) of 0.5g and 1g during rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear out or right-ear out, facing or back to motion. Binocular eye movements were measured in three dimensions using a video technique. On Earth, tangential centrifugation that produces lg of interaural linear acceleration combines with gravity to tilt the gravitoinertial acceleration (GIA) vector 45° in the roll plane relative to the head vertical, generating a summed vector of 1.4g. Before flight, this elicited mean ocular counterrolling (OCR) of 5.7°. Due to the relative absence of gravity during flight, there was no linear acceleration along the dorsoventral axis of the head. As a result, during in-flight centrifugation, gravitoinertial acceleration was strictly aligned with the centripetal acceleration along the interaural axis. There was a small but significant decrease (mean 10%) in the magnitude of OCR in space (5.1°). The magnitude of OCR during postflight 1g centrifugation was not significantly different from preflight OCR (5.9°). Findings were similar for 0.5g centrifugation, but the OCR magnitude was approximately 60% of that induced by centrifugation at 1g. OCR during pre- and postflight static tilt was not significantly different and was always less than OCR elicited by centrifugation on Earth for an equivalent interaural linear acceleration. In contrast, there was no difference between the OCR generated by in-flight centrifugation and by static tilt on Earth at equivalent interaural linear accelerations. These data support the following conclusions: (1) OCR is generated predominantly in response to interaural linear acceleration; (2) the increased OCR during centrifugation on Earth is a response to the head dorsoventral 1g linear acceleration component, which was absent in microgravity. The dorsoventral linear acceleration could have activated either the otoliths or body-tilt receptors that responded to the larger GIA magnitude (1.4g), to generate the increased OCR during centrifugation on Earth. A striking finding was that magnitude of OCR was maintained throughout and after flight. This is in contrast to most previous postflight OCR studies, which have generally registered decreases in OCR. We postulate that intermittent exposure to artificial gravity, in the form of the centripetal acceleration experienced during centrifugation, acted as a countermeasure to deconditioning of this otolith-ocular orienting reflex during the 16-day mission.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0014-4819</s0>
</fA01>
<fA02 i1="01">
<s0>EXBRAP</s0>
</fA02>
<fA03 i2="1">
<s0>Exp. brain res.</s0>
</fA03>
<fA05>
<s2>137</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ocular counterrolling induced by centrifugation during orbital space flight</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOORE (Steven T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CLEMENT (Gilles)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAPHAN (Theodore)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COHEN (Bernard)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th St.</s1>
<s2>New York, NY 10029</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Computer and Information Science, Brooklyn College</s1>
<s2>Brooklyn, N.Y.</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre de Recherche Cerveau et Cognition, CNRS/UPS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physiology and Biophysics, Mount Sinai School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>323-335</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12535</s2>
<s5>354000095137310060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0429089</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Experimental brain research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural centripetal accelerations (Gy centrifugation) of 0.5g and 1g during rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear out or right-ear out, facing or back to motion. Binocular eye movements were measured in three dimensions using a video technique. On Earth, tangential centrifugation that produces lg of interaural linear acceleration combines with gravity to tilt the gravitoinertial acceleration (GIA) vector 45° in the roll plane relative to the head vertical, generating a summed vector of 1.4g. Before flight, this elicited mean ocular counterrolling (OCR) of 5.7°. Due to the relative absence of gravity during flight, there was no linear acceleration along the dorsoventral axis of the head. As a result, during in-flight centrifugation, gravitoinertial acceleration was strictly aligned with the centripetal acceleration along the interaural axis. There was a small but significant decrease (mean 10%) in the magnitude of OCR in space (5.1°). The magnitude of OCR during postflight 1g centrifugation was not significantly different from preflight OCR (5.9°). Findings were similar for 0.5g centrifugation, but the OCR magnitude was approximately 60% of that induced by centrifugation at 1g. OCR during pre- and postflight static tilt was not significantly different and was always less than OCR elicited by centrifugation on Earth for an equivalent interaural linear acceleration. In contrast, there was no difference between the OCR generated by in-flight centrifugation and by static tilt on Earth at equivalent interaural linear accelerations. These data support the following conclusions: (1) OCR is generated predominantly in response to interaural linear acceleration; (2) the increased OCR during centrifugation on Earth is a response to the head dorsoventral 1g linear acceleration component, which was absent in microgravity. The dorsoventral linear acceleration could have activated either the otoliths or body-tilt receptors that responded to the larger GIA magnitude (1.4g), to generate the increased OCR during centrifugation on Earth. A striking finding was that magnitude of OCR was maintained throughout and after flight. This is in contrast to most previous postflight OCR studies, which have generally registered decreases in OCR. We postulate that intermittent exposure to artificial gravity, in the form of the centripetal acceleration experienced during centrifugation, acted as a countermeasure to deconditioning of this otolith-ocular orienting reflex during the 16-day mission.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B29C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Vol spatial</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Space flight</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Vuelo espacial</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Astronaute</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Astronaut</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Astronauta</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Accélération</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Acceleration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Aceleración</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rotation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Rotation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rotación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Vision binoculaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Binocular vision</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Visión binocular</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mouvement oculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Eye movement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Movimiento ocular</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Microgravité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Microgravity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Microgravidez</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Inclinaison</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tilt</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Inclinación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Otolithe</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Otolith</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Otolito</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Réflexe vestibulooculaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Vestibuloocular reflex</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Reflejo vestibuloocular</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Homme</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Human</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>54</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Système vestibulaire</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Vestibular system</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Sistema vestibular</s0>
<s5>20</s5>
</fC07>
<fN21>
<s1>302</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000089 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000089 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:01-0429089
   |texte=   Ocular counterrolling induced by centrifugation during orbital space flight
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024