Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical analysis of deep excavation

Identifieur interne : 000986 ( PascalFrancis/Corpus ); précédent : 000985; suivant : 000987

Numerical analysis of deep excavation

Auteurs : T. Tamano ; H. Tsuboi ; K. Haneda ; K. Harada ; S. Fukii

Source :

RBID : Pascal:96-0467925

Descripteurs français

English descriptors

Abstract

In recent years, the utilization of underground spaces has become a recognized necessity and deep excavations have been carried out extensively in urban areas. In such cases, it is important to elucidate the stabilization mechanism of the base ground of the excavation. Particularly in the case of ground consisting of a clay, some aspects of its mechanical behavior remain to be studied. This paper describes measurement of a deep shaft (12.6 m wide, 16.1 m long, 37.6 m deep) used for a shield tunnel in Osaka, Japan. The base ground of the excavation consists of an overconsolidated marine clay of OCR = 2. To exmaine the mechanism of this overconsolidated marine clay, its mechanical behaviour was measured. The mechanism was examined by comparing measured values with data derived from FEM analysis that was performed taking into account soil parameters obtained using a simplified stress condition (Lambe 1973)

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A08 01  1  ENG  @1 Numerical analysis of deep excavation
A09 01  1  ENG  @1 Numerical models in geomechanics
A11 01  1    @1 TAMANO (T.)
A11 02  1    @1 TSUBOI (H.)
A11 03  1    @1 HANEDA (K.)
A11 04  1    @1 HARADA (K.)
A11 05  1    @1 FUKII (S.)
A12 01  1    @1 PANDE (G.N.) @9 ed.
A12 02  1    @1 PIETRUSZCZAK (S.) @9 ed.
A15 01      @1 University of Wales Swansea @3 GBR @Z 1 aut.
A15 02      @1 McMaster University, Hamilton, Ontario @3 CAN @Z 2 aut.
A20       @1 539-544
A21       @1 1995
A23 01      @0 ENG
A25 01      @1 A.A. Balkema @2 Rotterdam
A26 01      @0 90-5410-568-2
A30 01  1  ENG  @1 NUMOG : International symposium numerical models in geomechanics @2 5 @3 Davos CHE @4 1995-09-06
A43 01      @1 BRGM @2 L/14228
A44       @0 0200
A45       @0 9 ref.
A47 01  1    @0 96-0467925
A60       @1 C
A61       @0 A
A66 01      @0 NLD
C01 01    ENG  @0 In recent years, the utilization of underground spaces has become a recognized necessity and deep excavations have been carried out extensively in urban areas. In such cases, it is important to elucidate the stabilization mechanism of the base ground of the excavation. Particularly in the case of ground consisting of a clay, some aspects of its mechanical behavior remain to be studied. This paper describes measurement of a deep shaft (12.6 m wide, 16.1 m long, 37.6 m deep) used for a shield tunnel in Osaka, Japan. The base ground of the excavation consists of an overconsolidated marine clay of OCR = 2. To exmaine the mechanism of this overconsolidated marine clay, its mechanical behaviour was measured. The mechanism was examined by comparing measured values with data derived from FEM analysis that was performed taking into account soil parameters obtained using a simplified stress condition (Lambe 1973)
C02 01  2    @0 226B01
C02 02  X    @0 001E01O01
C03 01  2  FRE  @0 Méthode élément fini
C03 01  2  ENG  @0 finite element analysis
C03 01  2  SPA  @0 Método elemento finito
C03 02  2  FRE  @0 Excavation
C03 02  2  ENG  @0 excavations
C03 02  2  SPA  @0 Excavación
C03 03  2  FRE  @0 Argile
C03 03  2  ENG  @0 clay
C03 03  2  SPA  @0 Arcilla
C03 04  2  FRE  @0 Propriété mécanique
C03 04  2  ENG  @0 mechanical properties
C03 04  2  SPA  @0 Propiedad mecánica
C03 05  2  FRE  @0 Matériau surconsolidé
C03 05  2  ENG  @0 overconsolidated materials
C03 05  2  SPA  @0 Material sobreconsolidado
C03 06  2  FRE  @0 Mur soutènement
C03 06  2  ENG  @0 retaining walls
C03 06  2  SPA  @0 Muro sostenimiento
C03 07  2  FRE  @0 Honshu @2 NG
C03 07  2  ENG  @0 Honshu @2 NG
C03 07  2  SPA  @0 Honshu @2 NG
C06       @0 ILS
C07 01  2  FRE  @0 Roche clastique meuble
C07 01  2  ENG  @0 clastic sediments
C07 01  2  SPA  @0 Sedimento clástico
C07 02  2  FRE  @0 Roche sédimentaire
C07 02  2  ENG  @0 sedimentary rocks
C07 02  2  SPA  @0 Roca sedimentaria
C07 03  2  FRE  @0 Japon @2 NG
C07 03  2  ENG  @0 Japan @2 NG
C07 03  2  SPA  @0 Japón @2 NG
C07 04  2  FRE  @0 Asie @2 NG
C07 04  2  ENG  @0 Asia @2 NG
C07 04  2  SPA  @0 Asia @2 NG
N21       @1 323

Format Inist (serveur)

NO : PASCAL 96-0467925 BRGM
ET : Numerical analysis of deep excavation
AU : TAMANO (T.); TSUBOI (H.); HANEDA (K.); HARADA (K.); FUKII (S.); PANDE (G.N.); PIETRUSZCZAK (S.)
AF : University of Wales Swansea/Royaume-Uni (1 aut.); McMaster University, Hamilton, Ontario/Canada (2 aut.)
DT : Congrès; Niveau analytique
SO : NUMOG : International symposium numerical models in geomechanics/5/1995-09-06/Davos CHE; Pays-Bas; Rotterdam: A.A. Balkema; Da. 1995; Pp. 539-544; ISBN 90-5410-568-2
LA : Anglais
EA : In recent years, the utilization of underground spaces has become a recognized necessity and deep excavations have been carried out extensively in urban areas. In such cases, it is important to elucidate the stabilization mechanism of the base ground of the excavation. Particularly in the case of ground consisting of a clay, some aspects of its mechanical behavior remain to be studied. This paper describes measurement of a deep shaft (12.6 m wide, 16.1 m long, 37.6 m deep) used for a shield tunnel in Osaka, Japan. The base ground of the excavation consists of an overconsolidated marine clay of OCR = 2. To exmaine the mechanism of this overconsolidated marine clay, its mechanical behaviour was measured. The mechanism was examined by comparing measured values with data derived from FEM analysis that was performed taking into account soil parameters obtained using a simplified stress condition (Lambe 1973)
CC : 226B01; 001E01O01
FD : Méthode élément fini; Excavation; Argile; Propriété mécanique; Matériau surconsolidé; Mur soutènement; Honshu
FG : Roche clastique meuble; Roche sédimentaire; Japon; Asie
ED : finite element analysis; excavations; clay; mechanical properties; overconsolidated materials; retaining walls; Honshu
EG : clastic sediments; sedimentary rocks; Japan; Asia
SD : Método elemento finito; Excavación; Arcilla; Propiedad mecánica; Material sobreconsolidado; Muro sostenimiento; Honshu
LO : BRGM-L/14228
ID : 96-0467925

Links to Exploration step

Pascal:96-0467925

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Numerical analysis of deep excavation</title>
<author>
<name sortKey="Tamano, T" sort="Tamano, T" uniqKey="Tamano T" first="T." last="Tamano">T. Tamano</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tsuboi, H" sort="Tsuboi, H" uniqKey="Tsuboi H" first="H." last="Tsuboi">H. Tsuboi</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Haneda, K" sort="Haneda, K" uniqKey="Haneda K" first="K." last="Haneda">K. Haneda</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Harada, K" sort="Harada, K" uniqKey="Harada K" first="K." last="Harada">K. Harada</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fukii, S" sort="Fukii, S" uniqKey="Fukii S" first="S." last="Fukii">S. Fukii</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">96-0467925</idno>
<date when="1995">1995</date>
<idno type="stanalyst">PASCAL 96-0467925 BRGM</idno>
<idno type="RBID">Pascal:96-0467925</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000986</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Numerical analysis of deep excavation</title>
<author>
<name sortKey="Tamano, T" sort="Tamano, T" uniqKey="Tamano T" first="T." last="Tamano">T. Tamano</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tsuboi, H" sort="Tsuboi, H" uniqKey="Tsuboi H" first="H." last="Tsuboi">H. Tsuboi</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Haneda, K" sort="Haneda, K" uniqKey="Haneda K" first="K." last="Haneda">K. Haneda</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Harada, K" sort="Harada, K" uniqKey="Harada K" first="K." last="Harada">K. Harada</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fukii, S" sort="Fukii, S" uniqKey="Fukii S" first="S." last="Fukii">S. Fukii</name>
<affiliation>
<wicri:noCountry>no FA14</wicri:noCountry>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Honshu</term>
<term>clay</term>
<term>excavations</term>
<term>finite element analysis</term>
<term>mechanical properties</term>
<term>overconsolidated materials</term>
<term>retaining walls</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode élément fini</term>
<term>Excavation</term>
<term>Argile</term>
<term>Propriété mécanique</term>
<term>Matériau surconsolidé</term>
<term>Mur soutènement</term>
<term>Honshu</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In recent years, the utilization of underground spaces has become a recognized necessity and deep excavations have been carried out extensively in urban areas. In such cases, it is important to elucidate the stabilization mechanism of the base ground of the excavation. Particularly in the case of ground consisting of a clay, some aspects of its mechanical behavior remain to be studied. This paper describes measurement of a deep shaft (12.6 m wide, 16.1 m long, 37.6 m deep) used for a shield tunnel in Osaka, Japan. The base ground of the excavation consists of an overconsolidated marine clay of OCR = 2. To exmaine the mechanism of this overconsolidated marine clay, its mechanical behaviour was measured. The mechanism was examined by comparing measured values with data derived from FEM analysis that was performed taking into account soil parameters obtained using a simplified stress condition (Lambe 1973)</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA08 i1="01" i2="1" l="ENG">
<s1>Numerical analysis of deep excavation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Numerical models in geomechanics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TAMANO (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TSUBOI (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HANEDA (K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HARADA (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FUKII (S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>PANDE (G.N.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PIETRUSZCZAK (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA15 i1="01">
<s1>University of Wales Swansea</s1>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>McMaster University, Hamilton, Ontario</s1>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>539-544</s1>
</fA20>
<fA21>
<s1>1995</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>A.A. Balkema</s1>
<s2>Rotterdam</s2>
</fA25>
<fA26 i1="01">
<s0>90-5410-568-2</s0>
</fA26>
<fA30 i1="01" i2="1" l="ENG">
<s1>NUMOG : International symposium numerical models in geomechanics</s1>
<s2>5</s2>
<s3>Davos CHE</s3>
<s4>1995-09-06</s4>
</fA30>
<fA43 i1="01">
<s1>BRGM</s1>
<s2>L/14228</s2>
</fA43>
<fA44>
<s0>0200</s0>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>96-0467925</s0>
</fA47>
<fA60>
<s1>C</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In recent years, the utilization of underground spaces has become a recognized necessity and deep excavations have been carried out extensively in urban areas. In such cases, it is important to elucidate the stabilization mechanism of the base ground of the excavation. Particularly in the case of ground consisting of a clay, some aspects of its mechanical behavior remain to be studied. This paper describes measurement of a deep shaft (12.6 m wide, 16.1 m long, 37.6 m deep) used for a shield tunnel in Osaka, Japan. The base ground of the excavation consists of an overconsolidated marine clay of OCR = 2. To exmaine the mechanism of this overconsolidated marine clay, its mechanical behaviour was measured. The mechanism was examined by comparing measured values with data derived from FEM analysis that was performed taking into account soil parameters obtained using a simplified stress condition (Lambe 1973)</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01O01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Méthode élément fini</s0>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>finite element analysis</s0>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Método elemento finito</s0>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Excavation</s0>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>excavations</s0>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Excavación</s0>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Argile</s0>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>clay</s0>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Arcilla</s0>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Propriété mécanique</s0>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>mechanical properties</s0>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Propiedad mecánica</s0>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Matériau surconsolidé</s0>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>overconsolidated materials</s0>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Material sobreconsolidado</s0>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Mur soutènement</s0>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>retaining walls</s0>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Muro sostenimiento</s0>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Honshu</s0>
<s2>NG</s2>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>Honshu</s0>
<s2>NG</s2>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Honshu</s0>
<s2>NG</s2>
</fC03>
<fC06>
<s0>ILS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Roche clastique meuble</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>clastic sediments</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Sedimento clástico</s0>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Roche sédimentaire</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>sedimentary rocks</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Roca sedimentaria</s0>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Japon</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Japan</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Japón</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>323</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 96-0467925 BRGM</NO>
<ET>Numerical analysis of deep excavation</ET>
<AU>TAMANO (T.); TSUBOI (H.); HANEDA (K.); HARADA (K.); FUKII (S.); PANDE (G.N.); PIETRUSZCZAK (S.)</AU>
<AF>University of Wales Swansea/Royaume-Uni (1 aut.); McMaster University, Hamilton, Ontario/Canada (2 aut.)</AF>
<DT>Congrès; Niveau analytique</DT>
<SO>NUMOG : International symposium numerical models in geomechanics/5/1995-09-06/Davos CHE; Pays-Bas; Rotterdam: A.A. Balkema; Da. 1995; Pp. 539-544; ISBN 90-5410-568-2</SO>
<LA>Anglais</LA>
<EA>In recent years, the utilization of underground spaces has become a recognized necessity and deep excavations have been carried out extensively in urban areas. In such cases, it is important to elucidate the stabilization mechanism of the base ground of the excavation. Particularly in the case of ground consisting of a clay, some aspects of its mechanical behavior remain to be studied. This paper describes measurement of a deep shaft (12.6 m wide, 16.1 m long, 37.6 m deep) used for a shield tunnel in Osaka, Japan. The base ground of the excavation consists of an overconsolidated marine clay of OCR = 2. To exmaine the mechanism of this overconsolidated marine clay, its mechanical behaviour was measured. The mechanism was examined by comparing measured values with data derived from FEM analysis that was performed taking into account soil parameters obtained using a simplified stress condition (Lambe 1973)</EA>
<CC>226B01; 001E01O01</CC>
<FD>Méthode élément fini; Excavation; Argile; Propriété mécanique; Matériau surconsolidé; Mur soutènement; Honshu</FD>
<FG>Roche clastique meuble; Roche sédimentaire; Japon; Asie</FG>
<ED>finite element analysis; excavations; clay; mechanical properties; overconsolidated materials; retaining walls; Honshu</ED>
<EG>clastic sediments; sedimentary rocks; Japan; Asia</EG>
<SD>Método elemento finito; Excavación; Arcilla; Propiedad mecánica; Material sobreconsolidado; Muro sostenimiento; Honshu</SD>
<LO>BRGM-L/14228</LO>
<ID>96-0467925</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000986 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000986 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:96-0467925
   |texte=   Numerical analysis of deep excavation
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024