Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FORMULATION OF Gmax FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO Gmax MEASURED IN THE FIELD

Identifieur interne : 000224 ( PascalFrancis/Corpus ); précédent : 000223; suivant : 000225

FORMULATION OF Gmax FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO Gmax MEASURED IN THE FIELD

Auteurs : Takayuki Kawaguchi ; Hiroyuki Tanaka

Source :

RBID : Pascal:09-0285905

Descripteurs français

English descriptors

Abstract

The elastic shear modulus of natural sedimentary clay ground, Gmax, is estimated based on laboratory tests for fifteen different reconstituted clays. Two types of tests were performed, i.e., Bender Element and Cyclic Triaxial tests. The proposed formulation is not based on void ratio, e, but consists of only three parameters: wL (liquid limit), p' (the current mean effective stress) and p'max (the maximum mean consolidation pressure). To apply it to the field, this equation is modified for using σ'v0 (the in situ effective overburden pressure) and OCR, instead of p' and p'max. Since existing formulae for Gmax are mostly based on e, they are not able to apply to both reconstituted soil and field, without considering the correction factor for structure. This is because e in the field is much larger than that for reconstituted soil even though their consolidation pressures and OCR are the same for these clays. The applicability of the proposed formula was examined by using investigated results from the in-situ seismic surveys performed at eleven worldwide sites. It is well demonstrated that the proposed equation in this paper is capable of predicting Gmax of natural sedimentary clay deposits with higher accuracy than the existing empirical formulae using a function of e.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0038-0806
A02 01      @0 SOIFBE
A03   1    @0 Soils found.
A05       @2 48
A06       @2 6
A08 01  1  ENG  @1 FORMULATION OF Gmax FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO Gmax MEASURED IN THE FIELD
A11 01  1    @1 KAWAGUCHI (Takayuki)
A11 02  1    @1 TANAKA (Hiroyuki)
A14 01      @1 Department of Civil Engineering, Hakodate National College of Technology @3 JPN @Z 1 aut.
A14 02      @1 Division of Solid Waste, Resources and Geoenvironmental Engineering, Graduate School of Engineering, Hokkaido University @3 JPN @Z 2 aut.
A20       @1 821-831
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 19776 @5 354000187008400060
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 09-0285905
A60       @1 P
A61       @0 A
A64 01  1    @0 Soils and foundations
A66 01      @0 JPN
C01 01    ENG  @0 The elastic shear modulus of natural sedimentary clay ground, Gmax, is estimated based on laboratory tests for fifteen different reconstituted clays. Two types of tests were performed, i.e., Bender Element and Cyclic Triaxial tests. The proposed formulation is not based on void ratio, e, but consists of only three parameters: wL (liquid limit), p' (the current mean effective stress) and p'max (the maximum mean consolidation pressure). To apply it to the field, this equation is modified for using σ'v0 (the in situ effective overburden pressure) and OCR, instead of p' and p'max. Since existing formulae for Gmax are mostly based on e, they are not able to apply to both reconstituted soil and field, without considering the correction factor for structure. This is because e in the field is much larger than that for reconstituted soil even though their consolidation pressures and OCR are the same for these clays. The applicability of the proposed formula was examined by using investigated results from the in-situ seismic surveys performed at eleven worldwide sites. It is well demonstrated that the proposed equation in this paper is capable of predicting Gmax of natural sedimentary clay deposits with higher accuracy than the existing empirical formulae using a function of e.
C02 01  X    @0 001D14F01
C02 02  X    @0 295
C03 01  X  FRE  @0 Essai sol @5 01
C03 01  X  ENG  @0 Soil test @5 01
C03 01  X  SPA  @0 Ensayo suelo @5 01
C03 02  X  FRE  @0 Formulation @5 02
C03 02  X  ENG  @0 Formulation @5 02
C03 02  X  SPA  @0 Formulación @5 02
C03 03  X  FRE  @0 Sol argileux @2 NT @5 03
C03 03  X  ENG  @0 Clay soil @2 NT @5 03
C03 03  X  SPA  @0 Suelo arcilloso @2 NT @5 03
C03 04  X  FRE  @0 Application @5 04
C03 04  X  ENG  @0 Application @5 04
C03 04  X  SPA  @0 Aplicación @5 04
C03 05  X  FRE  @0 Argile @5 05
C03 05  X  ENG  @0 Clay @5 05
C03 05  X  SPA  @0 Arcilla @5 05
C03 06  X  FRE  @0 Essai en place @5 06
C03 06  X  ENG  @0 In situ test @5 06
C03 06  X  SPA  @0 Ensayo en sitio @5 06
C03 07  X  FRE  @0 Essai laboratoire @5 07
C03 07  X  ENG  @0 Laboratory test @5 07
C03 07  X  SPA  @0 Ensayo laboratorio @5 07
C03 08  X  FRE  @0 Module cisaillement @5 08
C03 08  X  ENG  @0 Shear modulus @5 08
C03 08  X  SPA  @0 Módulo cizalladura Coulomb @5 08
C03 09  X  FRE  @0 Mesure in situ @5 09
C03 09  X  ENG  @0 Measurement in situ @5 09
C03 09  X  SPA  @0 Medición en sitio @5 09
C03 10  X  FRE  @0 Module élasticité @5 10
C03 10  X  ENG  @0 Elastic modulus @5 10
C03 10  X  SPA  @0 Módulo elasticidad @5 10
C03 11  X  FRE  @0 Déformation @5 11
C03 11  X  ENG  @0 Deformation @5 11
C03 11  X  SPA  @0 Deformación @5 11
C03 12  X  FRE  @0 Méthode essai @5 12
C03 12  X  ENG  @0 Test method @5 12
C03 12  X  SPA  @0 Método ensayo @5 12
C03 13  X  FRE  @0 Etude comparative @5 13
C03 13  X  ENG  @0 Comparative study @5 13
C03 13  X  SPA  @0 Estudio comparativo @5 13
N21       @1 208
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 09-0285905 INIST
ET : FORMULATION OF Gmax FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO Gmax MEASURED IN THE FIELD
AU : KAWAGUCHI (Takayuki); TANAKA (Hiroyuki)
AF : Department of Civil Engineering, Hakodate National College of Technology/Japon (1 aut.); Division of Solid Waste, Resources and Geoenvironmental Engineering, Graduate School of Engineering, Hokkaido University/Japon (2 aut.)
DT : Publication en série; Niveau analytique
SO : Soils and foundations; ISSN 0038-0806; Coden SOIFBE; Japon; Da. 2008; Vol. 48; No. 6; Pp. 821-831; Bibl. 39 ref.
LA : Anglais
EA : The elastic shear modulus of natural sedimentary clay ground, Gmax, is estimated based on laboratory tests for fifteen different reconstituted clays. Two types of tests were performed, i.e., Bender Element and Cyclic Triaxial tests. The proposed formulation is not based on void ratio, e, but consists of only three parameters: wL (liquid limit), p' (the current mean effective stress) and p'max (the maximum mean consolidation pressure). To apply it to the field, this equation is modified for using σ'v0 (the in situ effective overburden pressure) and OCR, instead of p' and p'max. Since existing formulae for Gmax are mostly based on e, they are not able to apply to both reconstituted soil and field, without considering the correction factor for structure. This is because e in the field is much larger than that for reconstituted soil even though their consolidation pressures and OCR are the same for these clays. The applicability of the proposed formula was examined by using investigated results from the in-situ seismic surveys performed at eleven worldwide sites. It is well demonstrated that the proposed equation in this paper is capable of predicting Gmax of natural sedimentary clay deposits with higher accuracy than the existing empirical formulae using a function of e.
CC : 001D14F01; 295
FD : Essai sol; Formulation; Sol argileux; Application; Argile; Essai en place; Essai laboratoire; Module cisaillement; Mesure in situ; Module élasticité; Déformation; Méthode essai; Etude comparative
ED : Soil test; Formulation; Clay soil; Application; Clay; In situ test; Laboratory test; Shear modulus; Measurement in situ; Elastic modulus; Deformation; Test method; Comparative study
SD : Ensayo suelo; Formulación; Suelo arcilloso; Aplicación; Arcilla; Ensayo en sitio; Ensayo laboratorio; Módulo cizalladura Coulomb; Medición en sitio; Módulo elasticidad; Deformación; Método ensayo; Estudio comparativo
LO : INIST-19776.354000187008400060
ID : 09-0285905

Links to Exploration step

Pascal:09-0285905

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">FORMULATION OF G
<sub>max</sub>
FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO G
<sub>max</sub>
MEASURED IN THE FIELD</title>
<author>
<name sortKey="Kawaguchi, Takayuki" sort="Kawaguchi, Takayuki" uniqKey="Kawaguchi T" first="Takayuki" last="Kawaguchi">Takayuki Kawaguchi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Hakodate National College of Technology</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Hiroyuki" sort="Tanaka, Hiroyuki" uniqKey="Tanaka H" first="Hiroyuki" last="Tanaka">Hiroyuki Tanaka</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Solid Waste, Resources and Geoenvironmental Engineering, Graduate School of Engineering, Hokkaido University</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0285905</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0285905 INIST</idno>
<idno type="RBID">Pascal:09-0285905</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">FORMULATION OF G
<sub>max</sub>
FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO G
<sub>max</sub>
MEASURED IN THE FIELD</title>
<author>
<name sortKey="Kawaguchi, Takayuki" sort="Kawaguchi, Takayuki" uniqKey="Kawaguchi T" first="Takayuki" last="Kawaguchi">Takayuki Kawaguchi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Hakodate National College of Technology</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Hiroyuki" sort="Tanaka, Hiroyuki" uniqKey="Tanaka H" first="Hiroyuki" last="Tanaka">Hiroyuki Tanaka</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Solid Waste, Resources and Geoenvironmental Engineering, Graduate School of Engineering, Hokkaido University</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Soils and foundations</title>
<title level="j" type="abbreviated">Soils found.</title>
<idno type="ISSN">0038-0806</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Soils and foundations</title>
<title level="j" type="abbreviated">Soils found.</title>
<idno type="ISSN">0038-0806</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Application</term>
<term>Clay</term>
<term>Clay soil</term>
<term>Comparative study</term>
<term>Deformation</term>
<term>Elastic modulus</term>
<term>Formulation</term>
<term>In situ test</term>
<term>Laboratory test</term>
<term>Measurement in situ</term>
<term>Shear modulus</term>
<term>Soil test</term>
<term>Test method</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Essai sol</term>
<term>Formulation</term>
<term>Sol argileux</term>
<term>Application</term>
<term>Argile</term>
<term>Essai en place</term>
<term>Essai laboratoire</term>
<term>Module cisaillement</term>
<term>Mesure in situ</term>
<term>Module élasticité</term>
<term>Déformation</term>
<term>Méthode essai</term>
<term>Etude comparative</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The elastic shear modulus of natural sedimentary clay ground, G
<sub>max</sub>
, is estimated based on laboratory tests for fifteen different reconstituted clays. Two types of tests were performed, i.e., Bender Element and Cyclic Triaxial tests. The proposed formulation is not based on void ratio, e, but consists of only three parameters: w
<sub>L</sub>
(liquid limit), p' (the current mean effective stress) and p'
<sub>max</sub>
(the maximum mean consolidation pressure). To apply it to the field, this equation is modified for using σ'
<sub>v0</sub>
(the in situ effective overburden pressure) and OCR, instead of p' and p'
<sub>max</sub>
. Since existing formulae for G
<sub>max</sub>
are mostly based on e, they are not able to apply to both reconstituted soil and field, without considering the correction factor for structure. This is because e in the field is much larger than that for reconstituted soil even though their consolidation pressures and OCR are the same for these clays. The applicability of the proposed formula was examined by using investigated results from the in-situ seismic surveys performed at eleven worldwide sites. It is well demonstrated that the proposed equation in this paper is capable of predicting G
<sub>max</sub>
of natural sedimentary clay deposits with higher accuracy than the existing empirical formulae using a function of e.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-0806</s0>
</fA01>
<fA02 i1="01">
<s0>SOIFBE</s0>
</fA02>
<fA03 i2="1">
<s0>Soils found.</s0>
</fA03>
<fA05>
<s2>48</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>FORMULATION OF G
<sub>max</sub>
FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO G
<sub>max</sub>
MEASURED IN THE FIELD</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KAWAGUCHI (Takayuki)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TANAKA (Hiroyuki)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Civil Engineering, Hakodate National College of Technology</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Solid Waste, Resources and Geoenvironmental Engineering, Graduate School of Engineering, Hokkaido University</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>821-831</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19776</s2>
<s5>354000187008400060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0285905</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Soils and foundations</s0>
</fA64>
<fA66 i1="01">
<s0>JPN</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The elastic shear modulus of natural sedimentary clay ground, G
<sub>max</sub>
, is estimated based on laboratory tests for fifteen different reconstituted clays. Two types of tests were performed, i.e., Bender Element and Cyclic Triaxial tests. The proposed formulation is not based on void ratio, e, but consists of only three parameters: w
<sub>L</sub>
(liquid limit), p' (the current mean effective stress) and p'
<sub>max</sub>
(the maximum mean consolidation pressure). To apply it to the field, this equation is modified for using σ'
<sub>v0</sub>
(the in situ effective overburden pressure) and OCR, instead of p' and p'
<sub>max</sub>
. Since existing formulae for G
<sub>max</sub>
are mostly based on e, they are not able to apply to both reconstituted soil and field, without considering the correction factor for structure. This is because e in the field is much larger than that for reconstituted soil even though their consolidation pressures and OCR are the same for these clays. The applicability of the proposed formula was examined by using investigated results from the in-situ seismic surveys performed at eleven worldwide sites. It is well demonstrated that the proposed equation in this paper is capable of predicting G
<sub>max</sub>
of natural sedimentary clay deposits with higher accuracy than the existing empirical formulae using a function of e.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D14F01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>295</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Essai sol</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Soil test</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ensayo suelo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Formulation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Formulation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Formulación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Sol argileux</s0>
<s2>NT</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Clay soil</s0>
<s2>NT</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Suelo arcilloso</s0>
<s2>NT</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Application</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Application</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Aplicación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Argile</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Clay</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Arcilla</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Essai en place</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>In situ test</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ensayo en sitio</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Essai laboratoire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Laboratory test</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ensayo laboratorio</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Module cisaillement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Shear modulus</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Módulo cizalladura Coulomb</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mesure in situ</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Measurement in situ</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medición en sitio</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Module élasticité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Elastic modulus</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Módulo elasticidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Déformation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Deformation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Deformación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode essai</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Test method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Método ensayo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>13</s5>
</fC03>
<fN21>
<s1>208</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0285905 INIST</NO>
<ET>FORMULATION OF G
<sub>max</sub>
FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO G
<sub>max</sub>
MEASURED IN THE FIELD</ET>
<AU>KAWAGUCHI (Takayuki); TANAKA (Hiroyuki)</AU>
<AF>Department of Civil Engineering, Hakodate National College of Technology/Japon (1 aut.); Division of Solid Waste, Resources and Geoenvironmental Engineering, Graduate School of Engineering, Hokkaido University/Japon (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Soils and foundations; ISSN 0038-0806; Coden SOIFBE; Japon; Da. 2008; Vol. 48; No. 6; Pp. 821-831; Bibl. 39 ref.</SO>
<LA>Anglais</LA>
<EA>The elastic shear modulus of natural sedimentary clay ground, G
<sub>max</sub>
, is estimated based on laboratory tests for fifteen different reconstituted clays. Two types of tests were performed, i.e., Bender Element and Cyclic Triaxial tests. The proposed formulation is not based on void ratio, e, but consists of only three parameters: w
<sub>L</sub>
(liquid limit), p' (the current mean effective stress) and p'
<sub>max</sub>
(the maximum mean consolidation pressure). To apply it to the field, this equation is modified for using σ'
<sub>v0</sub>
(the in situ effective overburden pressure) and OCR, instead of p' and p'
<sub>max</sub>
. Since existing formulae for G
<sub>max</sub>
are mostly based on e, they are not able to apply to both reconstituted soil and field, without considering the correction factor for structure. This is because e in the field is much larger than that for reconstituted soil even though their consolidation pressures and OCR are the same for these clays. The applicability of the proposed formula was examined by using investigated results from the in-situ seismic surveys performed at eleven worldwide sites. It is well demonstrated that the proposed equation in this paper is capable of predicting G
<sub>max</sub>
of natural sedimentary clay deposits with higher accuracy than the existing empirical formulae using a function of e.</EA>
<CC>001D14F01; 295</CC>
<FD>Essai sol; Formulation; Sol argileux; Application; Argile; Essai en place; Essai laboratoire; Module cisaillement; Mesure in situ; Module élasticité; Déformation; Méthode essai; Etude comparative</FD>
<ED>Soil test; Formulation; Clay soil; Application; Clay; In situ test; Laboratory test; Shear modulus; Measurement in situ; Elastic modulus; Deformation; Test method; Comparative study</ED>
<SD>Ensayo suelo; Formulación; Suelo arcilloso; Aplicación; Arcilla; Ensayo en sitio; Ensayo laboratorio; Módulo cizalladura Coulomb; Medición en sitio; Módulo elasticidad; Deformación; Método ensayo; Estudio comparativo</SD>
<LO>INIST-19776.354000187008400060</LO>
<ID>09-0285905</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0285905
   |texte=   FORMULATION OF Gmax FROM RECONSTITUTED CLAYEY SOILS AND ITS APPLICATION TO Gmax MEASURED IN THE FIELD
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024