Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Explicit stress integration of complex soil models

Identifieur interne : 001336 ( Main/Merge ); précédent : 001335; suivant : 001337

Explicit stress integration of complex soil models

Auteurs : Jidong Zhao [Australie] ; Daichao Sheng [Australie] ; M. Rouainia [Royaume-Uni] ; Scott W. Sloan [Australie]

Source :

RBID : ISTEX:E5E4CD236B1D6D99B6BB7395C82AFF6009DB75CB

English descriptors

Abstract

In this paper, two complex critical‐state models are implemented in a displacement finite element code. The two models are used for structured clays and sands, and are characterized by multiple yield surfaces, plastic yielding within the yield surface, and complex kinematic and isotropic hardening laws. The consistent tangent operators—which lead to a quadratic convergence when used in a fully implicit algorithm—are difficult to derive or may even not exist. The stress integration scheme used in this paper is based on the explicit Euler method with automatic substepping and error control. This scheme employs the classical elastoplastic stiffness matrix and requires only the first derivatives of the yield function and plastic potential. This explicit scheme is used to integrate the two complex critical‐state models—the sub/super‐loading surfaces model (SSLSM) and the kinematic hardening structure model (KHSM). Various boundary‐value problems are then analysed. The results for the two models are compared with each other, as well with those from standard Cam‐clay models. Accuracy and efficiency of the scheme used for the complex models are also investigated. Copyright © 2005 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nag.456

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:E5E4CD236B1D6D99B6BB7395C82AFF6009DB75CB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Explicit stress integration of complex soil models</title>
<author>
<name sortKey="Zhao, Jidong" sort="Zhao, Jidong" uniqKey="Zhao J" first="Jidong" last="Zhao">Jidong Zhao</name>
</author>
<author>
<name sortKey="Sheng, Daichao" sort="Sheng, Daichao" uniqKey="Sheng D" first="Daichao" last="Sheng">Daichao Sheng</name>
</author>
<author>
<name sortKey="Rouainia, M" sort="Rouainia, M" uniqKey="Rouainia M" first="M." last="Rouainia">M. Rouainia</name>
</author>
<author>
<name sortKey="Sloan, Scott W" sort="Sloan, Scott W" uniqKey="Sloan S" first="Scott W." last="Sloan">Scott W. Sloan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E5E4CD236B1D6D99B6BB7395C82AFF6009DB75CB</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1002/nag.456</idno>
<idno type="url">https://api.istex.fr/document/E5E4CD236B1D6D99B6BB7395C82AFF6009DB75CB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E72</idno>
<idno type="wicri:Area/Istex/Curation">000E31</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C09</idno>
<idno type="wicri:doubleKey">0363-9061:2005:Zhao J:explicit:stress:integration</idno>
<idno type="wicri:Area/Main/Merge">001336</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Explicit stress integration of complex soil models</title>
<author>
<name sortKey="Zhao, Jidong" sort="Zhao, Jidong" uniqKey="Zhao J" first="Jidong" last="Zhao">Jidong Zhao</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Engineering, University of Newcastle, NSW 2308</wicri:regionArea>
<wicri:noRegion>NSW 2308</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Daichao" sort="Sheng, Daichao" uniqKey="Sheng D" first="Daichao" last="Sheng">Daichao Sheng</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Engineering, University of Newcastle, NSW 2308</wicri:regionArea>
<wicri:noRegion>NSW 2308</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rouainia, M" sort="Rouainia, M" uniqKey="Rouainia M" first="M." last="Rouainia">M. Rouainia</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne NE1 7 RU</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE1 7 RU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sloan, Scott W" sort="Sloan, Scott W" uniqKey="Sloan S" first="Scott W." last="Sloan">Scott W. Sloan</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Engineering, University of Newcastle, NSW 2308</wicri:regionArea>
<wicri:noRegion>NSW 2308</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal for Numerical and Analytical Methods in Geomechanics</title>
<title level="j" type="abbrev">Int. J. Numer. Anal. Meth. Geomech.</title>
<idno type="ISSN">0363-9061</idno>
<idno type="eISSN">1096-9853</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-10">2005-10</date>
<biblScope unit="volume">29</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1209">1209</biblScope>
<biblScope unit="page" to="1229">1229</biblScope>
</imprint>
<idno type="ISSN">0363-9061</idno>
</series>
<idno type="istex">E5E4CD236B1D6D99B6BB7395C82AFF6009DB75CB</idno>
<idno type="DOI">10.1002/nag.456</idno>
<idno type="ArticleID">NAG456</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0363-9061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>automatic substepping</term>
<term>bounding surface</term>
<term>critical state models</term>
<term>explicit stress integration</term>
<term>structured soil</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, two complex critical‐state models are implemented in a displacement finite element code. The two models are used for structured clays and sands, and are characterized by multiple yield surfaces, plastic yielding within the yield surface, and complex kinematic and isotropic hardening laws. The consistent tangent operators—which lead to a quadratic convergence when used in a fully implicit algorithm—are difficult to derive or may even not exist. The stress integration scheme used in this paper is based on the explicit Euler method with automatic substepping and error control. This scheme employs the classical elastoplastic stiffness matrix and requires only the first derivatives of the yield function and plastic potential. This explicit scheme is used to integrate the two complex critical‐state models—the sub/super‐loading surfaces model (SSLSM) and the kinematic hardening structure model (KHSM). Various boundary‐value problems are then analysed. The results for the two models are compared with each other, as well with those from standard Cam‐clay models. Accuracy and efficiency of the scheme used for the complex models are also investigated. Copyright © 2005 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001336 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 001336 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:E5E4CD236B1D6D99B6BB7395C82AFF6009DB75CB
   |texte=   Explicit stress integration of complex soil models
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024