Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

Identifieur interne : 000C25 ( Istex/Corpus ); précédent : 000C24; suivant : 000C26

Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

Auteurs : Erkan Istanbulluoglu ; Rafael L. Bras

Source :

RBID : ISTEX:42F66A3AE6097610532C602767F36846BA88A9BD

Abstract

Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.

Url:
DOI: 10.1029/2004JF000249

Links to Exploration step

ISTEX:42F66A3AE6097610532C602767F36846BA88A9BD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
<author>
<name sortKey="Istanbulluoglu, Erkan" sort="Istanbulluoglu, Erkan" uniqKey="Istanbulluoglu E" first="Erkan" last="Istanbulluoglu">Erkan Istanbulluoglu</name>
<affiliation>
<mods:affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: erkan@mit.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bras, Rafael L" sort="Bras, Rafael L" uniqKey="Bras R" first="Rafael L." last="Bras">Rafael L. Bras</name>
<affiliation>
<mods:affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:42F66A3AE6097610532C602767F36846BA88A9BD</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1029/2004JF000249</idno>
<idno type="url">https://api.istex.fr/document/42F66A3AE6097610532C602767F36846BA88A9BD/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
<author>
<name sortKey="Istanbulluoglu, Erkan" sort="Istanbulluoglu, Erkan" uniqKey="Istanbulluoglu E" first="Erkan" last="Istanbulluoglu">Erkan Istanbulluoglu</name>
<affiliation>
<mods:affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: erkan@mit.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bras, Rafael L" sort="Bras, Rafael L" uniqKey="Bras R" first="Rafael L." last="Bras">Rafael L. Bras</name>
<affiliation>
<mods:affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2005-06">2005-06</date>
<biblScope unit="volume">110</biblScope>
<biblScope unit="issue">F2</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">42F66A3AE6097610532C602767F36846BA88A9BD</idno>
<idno type="DOI">10.1029/2004JF000249</idno>
<idno type="ArticleID">2004JF000249</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Erkan Istanbulluoglu</name>
<affiliations>
<json:string>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</json:string>
<json:string>E-mail: erkan@mit.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rafael L. Bras</name>
<affiliations>
<json:string>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ecogeomorphology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>drainage density</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vegetation dynamics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>landscape evolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>channel initiation</value>
</json:item>
</subject>
<articleId>
<json:string>2004JF000249</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>2293</abstractCharCount>
<pdfWordCount>15063</pdfWordCount>
<pdfCharCount>91553</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>322</abstractWordCount>
</qualityIndicators>
<title>Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>110</volume>
<publisherId>
<json:string>JGRF</json:string>
</publisherId>
<pages>
<total>19</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>F2</issue>
<subject>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Plant ecology</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Geomorphology and weathering</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Geomorphology: general</value>
</json:item>
<json:item>
<value>Erosion</value>
</json:item>
<json:item>
<value>Plant ecology</value>
</json:item>
<json:item>
<value>NONLINEAR GEOPHYSICS</value>
</json:item>
<json:item>
<value>Complex systems</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Earth Surface</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202f</json:string>
</doi>
</host>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1029/2004JF000249</json:string>
</doi>
<id>42F66A3AE6097610532C602767F36846BA88A9BD</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/42F66A3AE6097610532C602767F36846BA88A9BD/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/42F66A3AE6097610532C602767F36846BA88A9BD/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/42F66A3AE6097610532C602767F36846BA88A9BD/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2005</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
<author>
<persName>
<forename type="first">Erkan</forename>
<surname>Istanbulluoglu</surname>
</persName>
<email>erkan@mit.edu</email>
<affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Rafael L.</forename>
<surname>Bras</surname>
</persName>
<affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202f</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2005-06"></date>
<biblScope unit="volume">110</biblScope>
<biblScope unit="issue">F2</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">42F66A3AE6097610532C602767F36846BA88A9BD</idno>
<idno type="DOI">10.1029/2004JF000249</idno>
<idno type="ArticleID">2004JF000249</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>ecogeomorphology</term>
</item>
<item>
<term>drainage density</term>
</item>
<item>
<term>vegetation dynamics</term>
</item>
<item>
<term>landscape evolution</term>
</item>
<item>
<term>channel initiation</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Plant ecology</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Geomorphology and weathering</term>
</item>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Geomorphology: general</term>
</item>
<item>
<term>Erosion</term>
</item>
<item>
<term>Plant ecology</term>
</item>
<item>
<term>NONLINEAR GEOPHYSICS</term>
</item>
<item>
<term>Complex systems</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004-10-08">Received</change>
<change when="2005-02-28">Registration</change>
<change when="2005-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/42F66A3AE6097610532C602767F36846BA88A9BD/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrf131">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202f</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRF"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE">Journal of Geophysical Research: Earth Surface</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi>10.1002/jgrf.v110.F2</doi>
<idGroup>
<id type="focusSection" value="6"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Earth Surface</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="110">110</numbering>
<numbering type="journalIssue">F2</numbering>
</numberingGroup>
<coverDate startDate="2005-06">June 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="70" type="article" status="forIssue">
<doi>10.1029/2004JF000249</doi>
<idGroup>
<id type="editorialOffice" value="2004JF000249"></id>
<id type="society" value="F02012"></id>
<id type="unit" value="JGRF131"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2005 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-10-08"></event>
<event type="manuscriptRevised" date="2005-02-13"></event>
<event type="manuscriptAccepted" date="2005-02-28"></event>
<event type="firstOnline" date="2005-06-08"></event>
<event type="publishedOnlineFinalForm" date="2005-06-08"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2012-12-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0476">Plant ecology</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1625">Geomorphology and weathering</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1824">Geomorphology: general</subject>
<subject href="http://psi.agu.org/taxonomy5/1815">Erosion</subject>
<subject href="http://psi.agu.org/taxonomy5/1851">Plant ecology</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4400">NONLINEAR GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4430">Complex systems</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrf131-cit-0000" type="self">
<author>
<familyName>Istanbulluoglu</familyName>
,
<givenNames>E.</givenNames>
</author>
, and
<author>
<givenNames>R. L.</givenNames>
<familyName>Bras</familyName>
</author>
(
<pubYear year="2005">2005</pubYear>
),
<articleTitle>Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>110</vol>
, F02012, doi:
<accessionId ref="info:doi/10.1029/2004JF000249">10.1029/2004JF000249</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRF.JGRF131.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="main">Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
<title type="short">VEGETATION‐MODULATED LANDSCAPE EVOLUTION</title>
<title type="shortAuthors">Istanbulluoglu and Bras</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrf131-cr-0001" affiliationRef="#jgrf131-aff-0001">
<personName>
<givenNames>Erkan</givenNames>
<familyName>Istanbulluoglu</familyName>
</personName>
<contactDetails>
<email normalForm="erkan@mit.edu">erkan@mit.edu</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrf131-cr-0002" affiliationRef="#jgrf131-aff-0001">
<personName>
<givenNames>Rafael L.</givenNames>
<familyName>Bras</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrf131-aff-0001">
<orgDiv>Department of Civil and Environmental Engineering</orgDiv>
<orgName>Massachusetts Institute of Technology</orgName>
<address>
<city>Cambridge</city>
<countryPart>Massachusetts</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrf131-kwd-0001">ecogeomorphology</keyword>
<keyword xml:id="jgrf131-kwd-0002">drainage density</keyword>
<keyword xml:id="jgrf131-kwd-0003">vegetation dynamics</keyword>
<keyword xml:id="jgrf131-kwd-0004">landscape evolution</keyword>
<keyword xml:id="jgrf131-kwd-0005">channel initiation</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrf131:jgrf131-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrf131-para-0001" label="1">Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>VEGETATION‐MODULATED LANDSCAPE EVOLUTION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erkan</namePart>
<namePart type="family">Istanbulluoglu</namePart>
<affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</affiliation>
<affiliation>E-mail: erkan@mit.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael L.</namePart>
<namePart type="family">Bras</namePart>
<affiliation>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2005-06</dateIssued>
<dateCaptured encoding="w3cdtf">2004-10-08</dateCaptured>
<dateValid encoding="w3cdtf">2005-02-28</dateValid>
<edition>Istanbulluoglu, E., and R. L. Bras (2005), Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, J. Geophys. Res., 110, F02012, doi:10.1029/2004JF000249.</edition>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">11</extent>
<extent unit="tables">1</extent>
</physicalDescription>
<abstract>Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.</note>
<subject>
<genre>keywords</genre>
<topic>ecogeomorphology</topic>
<topic>drainage density</topic>
<topic>vegetation dynamics</topic>
<topic>landscape evolution</topic>
<topic>channel initiation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Earth Surface</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0476">Plant ecology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1625">Geomorphology and weathering</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1824">Geomorphology: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1815">Erosion</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1851">Plant ecology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4400">NONLINEAR GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4430">Complex systems</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202f</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRF</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>110</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>F2</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">42F66A3AE6097610532C602767F36846BA88A9BD</identifier>
<identifier type="DOI">10.1029/2004JF000249</identifier>
<identifier type="ArticleID">2004JF000249</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2005 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000C25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:42F66A3AE6097610532C602767F36846BA88A9BD
   |texte=   Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024