Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio

Identifieur interne : 001790 ( Istex/Corpus ); précédent : 001789; suivant : 001791

Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio

Auteurs : Moustafa Abou-Hamda ; Yiu-Wing Mai ; Shang-Xian Wu ; Brian Cotterell

Source :

RBID : ISTEX:89259FEC07DDA00B9DD72C271411C6375C312DAE

Abstract

Fatigue crack propagation in a rubber-toughened epoxy resin was studied at different test temperatures (−40 to 60°C) and stress ratios (0.05 to 0.70) using single edge-notched specimens at a frequency of 5 Hz. Fatigue crack propagation rates (dadN) were plotted against the stress-intensity factor amplitude (ΔK) in accordance with the Paris power-law equation. For a given stress ratio dadN was not sensitive to variations in test temperature. But for a given temperature dadN increased with stress ratio. Using the Williams' two-stage line zone model to analyse these experimental data, it was shown that the main failure process was due to shear plastic flow at the crack tip. The fatigue stress and the closure stress-intensity factor both decreased with increasing temperature, implying that more severe damage had occurred at higher testing temperatures. The experimental data were also analysed in terms of a new fatigue model, which considers the accumulation of damage due to cyclic plastic strain in the reversed plastic zone similar to the Coffin-Manson law and crack closure due to residual plastic stretch at the crack wake. There was good agreement between theory and experiment, suggesting a simpler way to correlate fatigue crack growth rates in this and other polymeric materials.

Url:
DOI: 10.1016/0032-3861(93)90180-I

Links to Exploration step

ISTEX:89259FEC07DDA00B9DD72C271411C6375C312DAE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
<author>
<name sortKey="Abou Hamda, Moustafa" sort="Abou Hamda, Moustafa" uniqKey="Abou Hamda M" first="Moustafa" last="Abou-Hamda">Moustafa Abou-Hamda</name>
<affiliation>
<mods:affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mai, Yiu Wing" sort="Mai, Yiu Wing" uniqKey="Mai Y" first="Yiu-Wing" last="Mai">Yiu-Wing Mai</name>
<affiliation>
<mods:affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shang Xian" sort="Wu, Shang Xian" uniqKey="Wu S" first="Shang-Xian" last="Wu">Shang-Xian Wu</name>
<affiliation>
<mods:affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cotterell, Brian" sort="Cotterell, Brian" uniqKey="Cotterell B" first="Brian" last="Cotterell">Brian Cotterell</name>
<affiliation>
<mods:affiliation>School of Mechanical and Production Engineering, National University of Singapore, Singapore</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:89259FEC07DDA00B9DD72C271411C6375C312DAE</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1016/0032-3861(93)90180-I</idno>
<idno type="url">https://api.istex.fr/document/89259FEC07DDA00B9DD72C271411C6375C312DAE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001790</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
<author>
<name sortKey="Abou Hamda, Moustafa" sort="Abou Hamda, Moustafa" uniqKey="Abou Hamda M" first="Moustafa" last="Abou-Hamda">Moustafa Abou-Hamda</name>
<affiliation>
<mods:affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mai, Yiu Wing" sort="Mai, Yiu Wing" uniqKey="Mai Y" first="Yiu-Wing" last="Mai">Yiu-Wing Mai</name>
<affiliation>
<mods:affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shang Xian" sort="Wu, Shang Xian" uniqKey="Wu S" first="Shang-Xian" last="Wu">Shang-Xian Wu</name>
<affiliation>
<mods:affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cotterell, Brian" sort="Cotterell, Brian" uniqKey="Cotterell B" first="Brian" last="Cotterell">Brian Cotterell</name>
<affiliation>
<mods:affiliation>School of Mechanical and Production Engineering, National University of Singapore, Singapore</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Polymer</title>
<title level="j" type="abbrev">JPOL</title>
<idno type="ISSN">0032-3861</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1992">1992</date>
<biblScope unit="volume">34</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="4221">4221</biblScope>
<biblScope unit="page" to="4229">4229</biblScope>
</imprint>
<idno type="ISSN">0032-3861</idno>
</series>
<idno type="istex">89259FEC07DDA00B9DD72C271411C6375C312DAE</idno>
<idno type="DOI">10.1016/0032-3861(93)90180-I</idno>
<idno type="PII">0032-3861(93)90180-I</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0032-3861</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fatigue crack propagation in a rubber-toughened epoxy resin was studied at different test temperatures (−40 to 60°C) and stress ratios (0.05 to 0.70) using single edge-notched specimens at a frequency of 5 Hz. Fatigue crack propagation rates (dadN) were plotted against the stress-intensity factor amplitude (ΔK) in accordance with the Paris power-law equation. For a given stress ratio dadN was not sensitive to variations in test temperature. But for a given temperature dadN increased with stress ratio. Using the Williams' two-stage line zone model to analyse these experimental data, it was shown that the main failure process was due to shear plastic flow at the crack tip. The fatigue stress and the closure stress-intensity factor both decreased with increasing temperature, implying that more severe damage had occurred at higher testing temperatures. The experimental data were also analysed in terms of a new fatigue model, which considers the accumulation of damage due to cyclic plastic strain in the reversed plastic zone similar to the Coffin-Manson law and crack closure due to residual plastic stretch at the crack wake. There was good agreement between theory and experiment, suggesting a simpler way to correlate fatigue crack growth rates in this and other polymeric materials.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Moustafa Abou-Hamda</name>
<affiliations>
<json:string>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yiu-Wing Mai</name>
<affiliations>
<json:string>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Shang-Xian Wu</name>
<affiliations>
<json:string>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Brian Cotterell</name>
<affiliations>
<json:string>School of Mechanical and Production Engineering, National University of Singapore, Singapore</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fatigue crack propagation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rubber-modified epoxy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stress ratio</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>damage accumulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>crack closure</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Coffin-Manson law</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fatigue models</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Fatigue crack propagation in a rubber-toughened epoxy resin was studied at different test temperatures (−40 to 60°C) and stress ratios (0.05 to 0.70) using single edge-notched specimens at a frequency of 5 Hz. Fatigue crack propagation rates (dadN) were plotted against the stress-intensity factor amplitude (ΔK) in accordance with the Paris power-law equation. For a given stress ratio dadN was not sensitive to variations in test temperature. But for a given temperature dadN increased with stress ratio. Using the Williams' two-stage line zone model to analyse these experimental data, it was shown that the main failure process was due to shear plastic flow at the crack tip. The fatigue stress and the closure stress-intensity factor both decreased with increasing temperature, implying that more severe damage had occurred at higher testing temperatures. The experimental data were also analysed in terms of a new fatigue model, which considers the accumulation of damage due to cyclic plastic strain in the reversed plastic zone similar to the Coffin-Manson law and crack closure due to residual plastic stretch at the crack wake. There was good agreement between theory and experiment, suggesting a simpler way to correlate fatigue crack growth rates in this and other polymeric materials.</abstract>
<qualityIndicators>
<score>7.412</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>612 x 843 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1297</abstractCharCount>
<pdfWordCount>5309</pdfWordCount>
<pdfCharCount>28254</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>201</abstractWordCount>
</qualityIndicators>
<title>Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
<pii>
<json:string>0032-3861(93)90180-I</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>34</volume>
<pii>
<json:string>S0032-3861(00)X0341-2</json:string>
</pii>
<pages>
<last>4229</last>
<first>4221</first>
</pages>
<issn>
<json:string>0032-3861</json:string>
</issn>
<issue>20</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Polymer</title>
<publicationDate>1993</publicationDate>
</host>
<categories>
<wos>
<json:string>POLYMER SCIENCE</json:string>
</wos>
</categories>
<publicationDate>1992</publicationDate>
<copyrightDate>1993</copyrightDate>
<doi>
<json:string>10.1016/0032-3861(93)90180-I</json:string>
</doi>
<id>89259FEC07DDA00B9DD72C271411C6375C312DAE</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/89259FEC07DDA00B9DD72C271411C6375C312DAE/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/89259FEC07DDA00B9DD72C271411C6375C312DAE/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/89259FEC07DDA00B9DD72C271411C6375C312DAE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/89259FEC07DDA00B9DD72C271411C6375C312DAE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1993</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Polymer paper</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
<author>
<persName>
<forename type="first">Moustafa</forename>
<surname>Abou-Hamda</surname>
</persName>
<affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</affiliation>
</author>
<author>
<persName>
<forename type="first">Yiu-Wing</forename>
<surname>Mai</surname>
</persName>
<affiliation>To whom correspondence should be addressed</affiliation>
<affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</affiliation>
</author>
<author>
<persName>
<forename type="first">Shang-Xian</forename>
<surname>Wu</surname>
</persName>
<affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</affiliation>
</author>
<author>
<persName>
<forename type="first">Brian</forename>
<surname>Cotterell</surname>
</persName>
<affiliation>School of Mechanical and Production Engineering, National University of Singapore, Singapore</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Polymer</title>
<title level="j" type="abbrev">JPOL</title>
<idno type="pISSN">0032-3861</idno>
<idno type="PII">S0032-3861(00)X0341-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1992"></date>
<biblScope unit="volume">34</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="4221">4221</biblScope>
<biblScope unit="page" to="4229">4229</biblScope>
</imprint>
</monogr>
<idno type="istex">89259FEC07DDA00B9DD72C271411C6375C312DAE</idno>
<idno type="DOI">10.1016/0032-3861(93)90180-I</idno>
<idno type="PII">0032-3861(93)90180-I</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1993</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Fatigue crack propagation in a rubber-toughened epoxy resin was studied at different test temperatures (−40 to 60°C) and stress ratios (0.05 to 0.70) using single edge-notched specimens at a frequency of 5 Hz. Fatigue crack propagation rates (dadN) were plotted against the stress-intensity factor amplitude (ΔK) in accordance with the Paris power-law equation. For a given stress ratio dadN was not sensitive to variations in test temperature. But for a given temperature dadN increased with stress ratio. Using the Williams' two-stage line zone model to analyse these experimental data, it was shown that the main failure process was due to shear plastic flow at the crack tip. The fatigue stress and the closure stress-intensity factor both decreased with increasing temperature, implying that more severe damage had occurred at higher testing temperatures. The experimental data were also analysed in terms of a new fatigue model, which considers the accumulation of damage due to cyclic plastic strain in the reversed plastic zone similar to the Coffin-Manson law and crack closure due to residual plastic stretch at the crack wake. There was good agreement between theory and experiment, suggesting a simpler way to correlate fatigue crack growth rates in this and other polymeric materials.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>fatigue crack propagation</term>
</item>
<item>
<term>rubber-modified epoxy</term>
</item>
<item>
<term>stress ratio</term>
</item>
<item>
<term>damage accumulation</term>
</item>
<item>
<term>crack closure</term>
</item>
<item>
<term>Coffin-Manson law</term>
</item>
<item>
<term>fatigue models</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1992-08-27">Received</change>
<change when="1993-01-25">Modified</change>
<change when="1992">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>JPOL</jid>
<aid>9390180I</aid>
<ce:pii>0032-3861(93)90180-I</ce:pii>
<ce:doi>10.1016/0032-3861(93)90180-I</ce:doi>
<ce:copyright type="unknown" year="1993"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Polymer paper</ce:textfn>
</ce:dochead>
<ce:title>Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Moustafa</ce:given-name>
<ce:surname>Abou-Hamda</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Yiu-Wing</ce:given-name>
<ce:surname>Mai</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Shang-Xian</ce:given-name>
<ce:surname>Wu</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>To whom correspondence should be addressed</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:author-group>
<ce:author>
<ce:given-name>Brian</ce:given-name>
<ce:surname>Cotterell</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>School of Mechanical and Production Engineering, National University of Singapore, Singapore</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="27" month="8" year="1992"></ce:date-received>
<ce:date-revised day="25" month="1" year="1993"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Fatigue crack propagation in a rubber-toughened epoxy resin was studied at different test temperatures (−40 to 60°C) and stress ratios (0.05 to 0.70) using single edge-notched specimens at a frequency of 5 Hz. Fatigue crack propagation rates (
<math altimg="si1.gif">
<fr shape="sol">
<nu>
<rm>d</rm>
a</nu>
<de>
<rm>d</rm>
N</de>
</fr>
</math>
) were plotted against the stress-intensity factor amplitude (
<ce:italic>ΔK</ce:italic>
) in accordance with the Paris power-law equation. For a given stress ratio
<math altimg="si2.gif">
<fr shape="sol">
<nu>
<rm>d</rm>
a</nu>
<de>
<rm>d</rm>
N</de>
</fr>
</math>
was not sensitive to variations in test temperature. But for a given temperature
<math altimg="si3.gif">
<fr shape="sol">
<nu>
<rm>d</rm>
a</nu>
<de>
<rm>d</rm>
N</de>
</fr>
</math>
increased with stress ratio. Using the Williams' two-stage line zone model to analyse these experimental data, it was shown that the main failure process was due to shear plastic flow at the crack tip. The fatigue stress and the closure stress-intensity factor both decreased with increasing temperature, implying that more severe damage had occurred at higher testing temperatures. The experimental data were also analysed in terms of a new fatigue model, which considers the accumulation of damage due to cyclic plastic strain in the reversed plastic zone similar to the Coffin-Manson law and crack closure due to residual plastic stretch at the crack wake. There was good agreement between theory and experiment, suggesting a simpler way to correlate fatigue crack growth rates in this and other polymeric materials.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>fatigue crack propagation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>rubber-modified epoxy</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>stress ratio</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>damage accumulation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>crack closure</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Coffin-Manson law</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>fatigue models</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio</title>
</titleInfo>
<name type="personal">
<namePart type="given">Moustafa</namePart>
<namePart type="family">Abou-Hamda</namePart>
<affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiu-Wing</namePart>
<namePart type="family">Mai</namePart>
<affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</affiliation>
<description>To whom correspondence should be addressed</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shang-Xian</namePart>
<namePart type="family">Wu</namePart>
<affiliation>Centre for Advanced Materials Technology, Department of Mechanical Engineering, University of Sydney, New South Wales 2006, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Cotterell</namePart>
<affiliation>School of Mechanical and Production Engineering, National University of Singapore, Singapore</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1992</dateIssued>
<dateCaptured encoding="w3cdtf">1992-08-27</dateCaptured>
<dateModified encoding="w3cdtf">1993-01-25</dateModified>
<copyrightDate encoding="w3cdtf">1993</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Fatigue crack propagation in a rubber-toughened epoxy resin was studied at different test temperatures (−40 to 60°C) and stress ratios (0.05 to 0.70) using single edge-notched specimens at a frequency of 5 Hz. Fatigue crack propagation rates (dadN) were plotted against the stress-intensity factor amplitude (ΔK) in accordance with the Paris power-law equation. For a given stress ratio dadN was not sensitive to variations in test temperature. But for a given temperature dadN increased with stress ratio. Using the Williams' two-stage line zone model to analyse these experimental data, it was shown that the main failure process was due to shear plastic flow at the crack tip. The fatigue stress and the closure stress-intensity factor both decreased with increasing temperature, implying that more severe damage had occurred at higher testing temperatures. The experimental data were also analysed in terms of a new fatigue model, which considers the accumulation of damage due to cyclic plastic strain in the reversed plastic zone similar to the Coffin-Manson law and crack closure due to residual plastic stretch at the crack wake. There was good agreement between theory and experiment, suggesting a simpler way to correlate fatigue crack growth rates in this and other polymeric materials.</abstract>
<note type="content">Section title: Polymer paper</note>
<subject>
<genre>Keywords</genre>
<topic>fatigue crack propagation</topic>
<topic>rubber-modified epoxy</topic>
<topic>stress ratio</topic>
<topic>damage accumulation</topic>
<topic>crack closure</topic>
<topic>Coffin-Manson law</topic>
<topic>fatigue models</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Polymer</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JPOL</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199310</dateIssued>
</originInfo>
<identifier type="ISSN">0032-3861</identifier>
<identifier type="PII">S0032-3861(00)X0341-2</identifier>
<part>
<date>199310</date>
<detail type="volume">
<number>34</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>20</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>4177</start>
<end>4384</end>
</extent>
<extent unit="pages">
<start>4221</start>
<end>4229</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">89259FEC07DDA00B9DD72C271411C6375C312DAE</identifier>
<identifier type="DOI">10.1016/0032-3861(93)90180-I</identifier>
<identifier type="PII">0032-3861(93)90180-I</identifier>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/89259FEC07DDA00B9DD72C271411C6375C312DAE/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">POLYMER SCIENCE</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001790 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001790 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:89259FEC07DDA00B9DD72C271411C6375C312DAE
   |texte=   Analysis of fatigue crack growth in a rubber-toughened epoxy resin: effect of temperature and stress ratio
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024