Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology

Identifieur interne : 001444 ( Istex/Corpus ); précédent : 001443; suivant : 001445

Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology

Auteurs : Joshua J. Roering ; James W. Kirchner ; William E. Dietrich

Source :

RBID : ISTEX:BD612560BE1A162D37544A5E28691C7E6675F464

Abstract

Steep, soil‐mantled hillslopes evolve through the downslope movement of soil, driven largely by slope‐dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil‐mantled hillslopes, however, curvature appears to vary systematically, such that slopes are typically convex near the divide and become increasingly planar downslope. This suggests that linear diffusion is not an adequate model to describe the entire morphology of soil‐mantled hillslopes. Here we show that the interaction between local disturbances (such as rainsplash and biogenic activity) and frictional and gravitational forces results in a diffusive transport law that depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as gradient approaches a critical value. We calibrated and tested this transport law using high‐resolution topographic data from the Oregon Coast Range. These data, obtained by airborne laser altimetry, allow us to characterize hillslope morphology at ≈2 m scale. At five small basins in our study area, hillslope curvature approaches zero with increasing gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope gradients tend to cluster near values for which sediment flux increases rapidly with slope, such that large changes in erosion rate will correspond to small changes in gradien. Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature near the divide rather than average hillslope gradient.

Url:
DOI: 10.1029/1998WR900090

Links to Exploration step

ISTEX:BD612560BE1A162D37544A5E28691C7E6675F464

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
<author wicri:is="90%">
<name sortKey="Roering, Joshua J" sort="Roering, Joshua J" uniqKey="Roering J" first="Joshua J." last="Roering">Joshua J. Roering</name>
</author>
<author wicri:is="90%">
<name sortKey="Kirchner, James W" sort="Kirchner, James W" uniqKey="Kirchner J" first="James W." last="Kirchner">James W. Kirchner</name>
</author>
<author wicri:is="90%">
<name sortKey="Dietrich, William E" sort="Dietrich, William E" uniqKey="Dietrich W" first="William E." last="Dietrich">William E. Dietrich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BD612560BE1A162D37544A5E28691C7E6675F464</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1029/1998WR900090</idno>
<idno type="url">https://api.istex.fr/document/BD612560BE1A162D37544A5E28691C7E6675F464/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001444</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
<author wicri:is="90%">
<name sortKey="Roering, Joshua J" sort="Roering, Joshua J" uniqKey="Roering J" first="Joshua J." last="Roering">Joshua J. Roering</name>
</author>
<author wicri:is="90%">
<name sortKey="Kirchner, James W" sort="Kirchner, James W" uniqKey="Kirchner J" first="James W." last="Kirchner">James W. Kirchner</name>
</author>
<author wicri:is="90%">
<name sortKey="Dietrich, William E" sort="Dietrich, William E" uniqKey="Dietrich W" first="William E." last="Dietrich">William E. Dietrich</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="ISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1999-03">1999-03</date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="853">853</biblScope>
<biblScope unit="page" to="870">870</biblScope>
</imprint>
<idno type="ISSN">0043-1397</idno>
</series>
<idno type="istex">BD612560BE1A162D37544A5E28691C7E6675F464</idno>
<idno type="DOI">10.1029/1998WR900090</idno>
<idno type="ArticleID">1998WR900090</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0043-1397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Steep, soil‐mantled hillslopes evolve through the downslope movement of soil, driven largely by slope‐dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil‐mantled hillslopes, however, curvature appears to vary systematically, such that slopes are typically convex near the divide and become increasingly planar downslope. This suggests that linear diffusion is not an adequate model to describe the entire morphology of soil‐mantled hillslopes. Here we show that the interaction between local disturbances (such as rainsplash and biogenic activity) and frictional and gravitational forces results in a diffusive transport law that depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as gradient approaches a critical value. We calibrated and tested this transport law using high‐resolution topographic data from the Oregon Coast Range. These data, obtained by airborne laser altimetry, allow us to characterize hillslope morphology at ≈2 m scale. At five small basins in our study area, hillslope curvature approaches zero with increasing gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope gradients tend to cluster near values for which sediment flux increases rapidly with slope, such that large changes in erosion rate will correspond to small changes in gradien. Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature near the divide rather than average hillslope gradient.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Joshua J. Roering</name>
</json:item>
<json:item>
<name>James W. Kirchner</name>
</json:item>
<json:item>
<name>William E. Dietrich</name>
</json:item>
</author>
<articleId>
<json:string>1998WR900090</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Steep, soil‐mantled hillslopes evolve through the downslope movement of soil, driven largely by slope‐dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil‐mantled hillslopes, however, curvature appears to vary systematically, such that slopes are typically convex near the divide and become increasingly planar downslope. This suggests that linear diffusion is not an adequate model to describe the entire morphology of soil‐mantled hillslopes. Here we show that the interaction between local disturbances (such as rainsplash and biogenic activity) and frictional and gravitational forces results in a diffusive transport law that depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as gradient approaches a critical value. We calibrated and tested this transport law using high‐resolution topographic data from the Oregon Coast Range. These data, obtained by airborne laser altimetry, allow us to characterize hillslope morphology at ≈2 m scale. At five small basins in our study area, hillslope curvature approaches zero with increasing gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope gradients tend to cluster near values for which sediment flux increases rapidly with slope, such that large changes in erosion rate will correspond to small changes in gradien. Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature near the divide rather than average hillslope gradient.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>593 x 812 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1981</abstractCharCount>
<pdfWordCount>7088</pdfWordCount>
<pdfCharCount>71535</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>279</abstractWordCount>
</qualityIndicators>
<title>Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>35</volume>
<publisherId>
<json:string>WRCR</json:string>
</publisherId>
<pages>
<total>18</total>
<last>870</last>
<first>853</first>
</pages>
<issn>
<json:string>0043-1397</json:string>
</issn>
<issue>3</issue>
<subject>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Geomorphology: general</value>
</json:item>
<json:item>
<value>Erosion</value>
</json:item>
<json:item>
<value>Erosion, Sedimentation, and Geomorphology</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-7973</json:string>
</eissn>
<title>Water Resources Research</title>
<doi>
<json:string>10.1002/(ISSN)1944-7973</json:string>
</doi>
</host>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1029/1998WR900090</json:string>
</doi>
<id>BD612560BE1A162D37544A5E28691C7E6675F464</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/BD612560BE1A162D37544A5E28691C7E6675F464/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/BD612560BE1A162D37544A5E28691C7E6675F464/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/BD612560BE1A162D37544A5E28691C7E6675F464/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>1999</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
<author>
<persName>
<forename type="first">Joshua J.</forename>
<surname>Roering</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">James W.</forename>
<surname>Kirchner</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">William E.</forename>
<surname>Dietrich</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="pISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<idno type="DOI">10.1002/(ISSN)1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1999-03"></date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="853">853</biblScope>
<biblScope unit="page" to="870">870</biblScope>
</imprint>
</monogr>
<idno type="istex">BD612560BE1A162D37544A5E28691C7E6675F464</idno>
<idno type="DOI">10.1029/1998WR900090</idno>
<idno type="ArticleID">1998WR900090</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Steep, soil‐mantled hillslopes evolve through the downslope movement of soil, driven largely by slope‐dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil‐mantled hillslopes, however, curvature appears to vary systematically, such that slopes are typically convex near the divide and become increasingly planar downslope. This suggests that linear diffusion is not an adequate model to describe the entire morphology of soil‐mantled hillslopes. Here we show that the interaction between local disturbances (such as rainsplash and biogenic activity) and frictional and gravitational forces results in a diffusive transport law that depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as gradient approaches a critical value. We calibrated and tested this transport law using high‐resolution topographic data from the Oregon Coast Range. These data, obtained by airborne laser altimetry, allow us to characterize hillslope morphology at ≈2 m scale. At five small basins in our study area, hillslope curvature approaches zero with increasing gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope gradients tend to cluster near values for which sediment flux increases rapidly with slope, such that large changes in erosion rate will correspond to small changes in gradien. Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature near the divide rather than average hillslope gradient.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Geomorphology: general</term>
</item>
<item>
<term>Erosion</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Erosion, Sedimentation, and Geomorphology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998-05-15">Received</change>
<change when="1998-11-09">Registration</change>
<change when="1999-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/BD612560BE1A162D37544A5E28691C7E6675F464/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="wrcr8085">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-7973</doi>
<issn type="print">0043-1397</issn>
<issn type="electronic">1944-7973</issn>
<idGroup>
<id type="product" value="WRCR"></id>
<id type="coden" value="WRERAQ"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="WATER RESOURCES RESEARCH">Water Resources Research</title>
<title type="short">Water Resour. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi>10.1002/wrcr.v35.3</doi>
<numberingGroup>
<numbering type="journalVolume" number="35">35</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="1999-03">March 1999</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="220" status="forIssue">
<doi>10.1029/1998WR900090</doi>
<idGroup>
<id type="editorialOffice" value="1998WR900090"></id>
<id type="unit" value="WRCR8085"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Erosion, Sedimentation, and Geomorphology</title>
<title type="tocHeading1">Erosion, Sedimentation, and Geomorphology</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 1999 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1998-05-15"></event>
<event type="manuscriptAccepted" date="1998-11-09"></event>
<event type="publishedPrint" date="1999-03"></event>
<event type="firstOnline" date="2010-07-09"></event>
<event type="publishedOnlineFinalForm" date="2010-07-09"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0" date="2013-02-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-21"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">853</numbering>
<numbering type="pageLast">870</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1824">Geomorphology: general</subject>
<subject href="http://psi.agu.org/taxonomy5/1815">Erosion</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="wrcr8085-cit-0000" type="self">
<author>
<familyName>Roering</familyName>
,
<givenNames>J. J.</givenNames>
</author>
,
<author>
<givenNames>J. W.</givenNames>
<familyName>Kirchner</familyName>
</author>
, and
<author>
<givenNames>W. E.</givenNames>
<familyName>Dietrich</familyName>
</author>
(
<pubYear year="1999">1999</pubYear>
),
<articleTitle>Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</articleTitle>
,
<journalTitle>Water Resour. Res.</journalTitle>
,
<vol>35</vol>
(
<issue>3</issue>
),
<pageFirst>853</pageFirst>
<pageLast>870</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/1998WR900090">10.1029/1998WR900090</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRCR.WRCR8085.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
<title type="shortAuthors">Roering ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="wrcr8085-cr-0001">
<personName>
<givenNames>Joshua J.</givenNames>
<familyName>Roering</familyName>
</personName>
</creator>
<creator xml:id="wrcr8085-cr-0002">
<personName>
<givenNames>James W.</givenNames>
<familyName>Kirchner</familyName>
</personName>
</creator>
<creator xml:id="wrcr8085-cr-0003">
<personName>
<givenNames>William E.</givenNames>
<familyName>Dietrich</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="wrcr8085-para-0001">Steep, soil‐mantled hillslopes evolve through the downslope movement of soil, driven largely by slope‐dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil‐mantled hillslopes, however, curvature appears to vary systematically, such that slopes are typically convex near the divide and become increasingly planar downslope. This suggests that linear diffusion is not an adequate model to describe the entire morphology of soil‐mantled hillslopes. Here we show that the interaction between local disturbances (such as rainsplash and biogenic activity) and frictional and gravitational forces results in a diffusive transport law that depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as gradient approaches a critical value. We calibrated and tested this transport law using high‐resolution topographic data from the Oregon Coast Range. These data, obtained by airborne laser altimetry, allow us to characterize hillslope morphology at ≈2 m scale. At five small basins in our study area, hillslope curvature approaches zero with increasing gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope gradients tend to cluster near values for which sediment flux increases rapidly with slope, such that large changes in erosion rate will correspond to small changes in gradien. Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature near the divide rather than average hillslope gradient.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua J.</namePart>
<namePart type="family">Roering</namePart>
</name>
<name type="personal">
<namePart type="given">James W.</namePart>
<namePart type="family">Kirchner</namePart>
</name>
<name type="personal">
<namePart type="given">William E.</namePart>
<namePart type="family">Dietrich</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1999-03</dateIssued>
<dateCaptured encoding="w3cdtf">1998-05-15</dateCaptured>
<dateValid encoding="w3cdtf">1998-11-09</dateValid>
<edition>Roering, J. J., J. W. Kirchner, and W. E. Dietrich (1999), Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35(3), 853–870, doi:10.1029/1998WR900090.</edition>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Steep, soil‐mantled hillslopes evolve through the downslope movement of soil, driven largely by slope‐dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil‐mantled hillslopes, however, curvature appears to vary systematically, such that slopes are typically convex near the divide and become increasingly planar downslope. This suggests that linear diffusion is not an adequate model to describe the entire morphology of soil‐mantled hillslopes. Here we show that the interaction between local disturbances (such as rainsplash and biogenic activity) and frictional and gravitational forces results in a diffusive transport law that depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as gradient approaches a critical value. We calibrated and tested this transport law using high‐resolution topographic data from the Oregon Coast Range. These data, obtained by airborne laser altimetry, allow us to characterize hillslope morphology at ≈2 m scale. At five small basins in our study area, hillslope curvature approaches zero with increasing gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope gradients tend to cluster near values for which sediment flux increases rapidly with slope, such that large changes in erosion rate will correspond to small changes in gradien. Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature near the divide rather than average hillslope gradient.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Water Resources Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Water Resour. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1824">Geomorphology: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1815">Erosion</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Erosion, Sedimentation, and Geomorphology</topic>
</subject>
<identifier type="ISSN">0043-1397</identifier>
<identifier type="eISSN">1944-7973</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-7973</identifier>
<identifier type="CODEN">WRERAQ</identifier>
<identifier type="PublisherID">WRCR</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>853</start>
<end>870</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">BD612560BE1A162D37544A5E28691C7E6675F464</identifier>
<identifier type="DOI">10.1029/1998WR900090</identifier>
<identifier type="ArticleID">1998WR900090</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1999 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001444 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001444 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:BD612560BE1A162D37544A5E28691C7E6675F464
   |texte=   Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024