Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vestibulo-oculomotor research and measurement technology for the space station era

Identifieur interne : 000842 ( Istex/Corpus ); précédent : 000841; suivant : 000843

Vestibulo-oculomotor research and measurement technology for the space station era

Auteurs : Andrew H. Clarke

Source :

RBID : ISTEX:E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25

Abstract

Recent improvements in measurement techniques and mathematical representations for eye, head and body movement have enhanced our appreciation of the complexity of spatial orientation and locomotion in three-dimensional space. The shortcomings of present measurement techniques, and their solution with emerging technologies are described. The prolonged microgravity conditions on the space station provide a unique opportunity to investigate these three-dimensional aspects of the vestibular and oculomotor systems, and in particular, the role of the otolith afferences. While the canal–ocular responses and their central pathways are reasonably well understood, the community has only recently become aware of the variety of functions fulfilled by otolith-mediated information, i.e., translational otolith–ocular reflex, inertial processing, gravitational reference, vergence control. Recent results, largely from experiments performed on the Mir Station, where the emphasis was on the otolith contribution to the vestibulo-ocular response mechanisms, are reviewed.

Url:
DOI: 10.1016/S0165-0173(98)00037-X

Links to Exploration step

ISTEX:E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Vestibulo-oculomotor research and measurement technology for the space station era</title>
<author>
<name sortKey="Clarke, Andrew H" sort="Clarke, Andrew H" uniqKey="Clarke A" first="Andrew H" last="Clarke">Andrew H. Clarke</name>
<affiliation>
<mods:affiliation>Benjamin Franklin Vestibular Lab, Freie Universität Berlin, Berlin, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0165-0173(98)00037-X</idno>
<idno type="url">https://api.istex.fr/document/E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000842</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Vestibulo-oculomotor research and measurement technology for the space station era</title>
<author>
<name sortKey="Clarke, Andrew H" sort="Clarke, Andrew H" uniqKey="Clarke A" first="Andrew H" last="Clarke">Andrew H. Clarke</name>
<affiliation>
<mods:affiliation>Benjamin Franklin Vestibular Lab, Freie Universität Berlin, Berlin, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Brain Research Reviews</title>
<title level="j" type="abbrev">BRESR</title>
<idno type="ISSN">0165-0173</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">28</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="173">173</biblScope>
<biblScope unit="page" to="184">184</biblScope>
</imprint>
<idno type="ISSN">0165-0173</idno>
</series>
<idno type="istex">E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25</idno>
<idno type="DOI">10.1016/S0165-0173(98)00037-X</idno>
<idno type="PII">S0165-0173(98)00037-X</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0165-0173</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent improvements in measurement techniques and mathematical representations for eye, head and body movement have enhanced our appreciation of the complexity of spatial orientation and locomotion in three-dimensional space. The shortcomings of present measurement techniques, and their solution with emerging technologies are described. The prolonged microgravity conditions on the space station provide a unique opportunity to investigate these three-dimensional aspects of the vestibular and oculomotor systems, and in particular, the role of the otolith afferences. While the canal–ocular responses and their central pathways are reasonably well understood, the community has only recently become aware of the variety of functions fulfilled by otolith-mediated information, i.e., translational otolith–ocular reflex, inertial processing, gravitational reference, vergence control. Recent results, largely from experiments performed on the Mir Station, where the emphasis was on the otolith contribution to the vestibulo-ocular response mechanisms, are reviewed.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Andrew H Clarke</name>
<affiliations>
<json:string>Benjamin Franklin Vestibular Lab, Freie Universität Berlin, Berlin, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Three-dimensional vestibulo-ocular reflex</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Otolith–ocular reflex</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Spatial orientation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Microgravity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Ocular torsion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Eye movement measurement</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Recent improvements in measurement techniques and mathematical representations for eye, head and body movement have enhanced our appreciation of the complexity of spatial orientation and locomotion in three-dimensional space. The shortcomings of present measurement techniques, and their solution with emerging technologies are described. The prolonged microgravity conditions on the space station provide a unique opportunity to investigate these three-dimensional aspects of the vestibular and oculomotor systems, and in particular, the role of the otolith afferences. While the canal–ocular responses and their central pathways are reasonably well understood, the community has only recently become aware of the variety of functions fulfilled by otolith-mediated information, i.e., translational otolith–ocular reflex, inertial processing, gravitational reference, vergence control. Recent results, largely from experiments performed on the Mir Station, where the emphasis was on the otolith contribution to the vestibulo-ocular response mechanisms, are reviewed.</abstract>
<qualityIndicators>
<score>6.656</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 758 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1066</abstractCharCount>
<pdfWordCount>6586</pdfWordCount>
<pdfCharCount>42993</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>138</abstractWordCount>
</qualityIndicators>
<title>Vestibulo-oculomotor research and measurement technology for the space station era</title>
<pii>
<json:string>S0165-0173(98)00037-X</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>28</volume>
<pii>
<json:string>S0165-0173(00)X0021-5</json:string>
</pii>
<pages>
<last>184</last>
<first>173</first>
</pages>
<issn>
<json:string>0165-0173</json:string>
</issn>
<issue>1–2</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Brain Research Reviews</title>
<publicationDate>1998</publicationDate>
</host>
<categories>
<wos>
<json:string>NEUROSCIENCES</json:string>
</wos>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0165-0173(98)00037-X</json:string>
</doi>
<id>E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Vestibulo-oculomotor research and measurement technology for the space station era</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Short review</note>
<note type="content">Fig. 1: Principle of operation of the video-oculography technique for three-dimensional eye movement measurement. The video images of the eyes are acquired by miniaturised video cameras integrated into a head-mounted assembly; infrared diode sources mounted concentrically with the sensor lens provides the necessary lighting. The centre-of-pupil is estimated by approximating its boundary as a circle. Further processing of the orthographic projection of the eyeball onto the camera image plane performs geometric compensation as the eyeball assumes secondary or tertiary positions [34, 52]. For each video image, the contrast profile around a pre-selected angular segment of the natural iris is extracted. This signature is defined uniquely by its radius from centre-of-pupil and angular range. Polar correlation of each signature against a reference yields a direct measure of ocular torsion. The measurement of ocular torsion is thus derived solely from the natural luminance structure of the iris pigmentation.</note>
<note type="content">Fig. 2: Eye tracking with high-speed imaging devices. An example is shown of realtime, online data acquired at 400 image/s (horizontal component of eye movement), as measured using novel image-processing technology. The highlight illustrates the temporal resolution of fast phases (saccades).</note>
<note type="content">Fig. 3: Three-dimensional representation of the VOR. The unity matrix represents the ideal case with zero crosstalk between components. The matrices for active and passive head rotations (eye velocity/head velocity) were calculated from data sets involving yaw, pitch and roll rotation of the head, as illustrated by the example on the left.</note>
<note type="content">Fig. 4: Three-dimensional vestibulo-ocular response during active head roll. Preflight and inflight recordings of three-dimensional eye movement during active head roll oscillation (0.32 Hz). The techniques for eye and head movement measurement are described in the text. Head movement (not shown) were near identical in each measurement session. The preflight example (A) illustrates the typical eye movement response, involving sinusoidal modulation of all three components (vertical, horizontal, torsional). The example (B), recorded in space, illustrates the clear reduction in the vertical and horizontal components, presumably due to the lack of gravity loading to the otolith receptors. In (C), recorded 11 h after landing, a re-generation of the vertical and horizontal components, indicated by the strong saccading of the horizontal component, is evident. The response measured 9 days after landing (D) again resembles the preflight recording (A).</note>
<note type="content">Fig. 5: Ocular torsion induced by active head tilt. Examples are shown from active head tilts (approx. 30° to left) performed during preflight and inflight testing. The tonic change in ocular torsional position (ocular counter-roll), which is attributed to the otolith afferences, is absent in the 0-g response.</note>
<note type="content">Fig. 6: Otolith–ocular response to unilateral radial acceleration. During constant angular velocity around the earth-vertical axis, the subject is displaced laterally (±3.5 cm left/right). This aligns the left labyrinth with the axis of rotation, while the right is subject to the radial acceleration and vice versa. For a constant angular velocity rotation of 300°/s, the radial acceleration amounts to 0.19 g, equivalent to 11° tilt of GIA for the eccentric labyrinth. The traces represent averaged stimulus (dotted) and averaged torsional responses for the right and left over 10 cycles of displacement.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Vestibulo-oculomotor research and measurement technology for the space station era</title>
<author>
<persName>
<forename type="first">Andrew H</forename>
<surname>Clarke</surname>
</persName>
<note type="biography">Labor für experimentelle Gleichgewichtsforschung, Hals- Nasen- und Ohrenklinik, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin. Fax: +49-30-834-2116; E-mail: clarke@zedat.fu-berlin.de</note>
<affiliation>Benjamin Franklin Vestibular Lab, Freie Universität Berlin, Berlin, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Brain Research Reviews</title>
<title level="j" type="abbrev">BRESR</title>
<idno type="pISSN">0165-0173</idno>
<idno type="PII">S0165-0173(00)X0021-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">28</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="173">173</biblScope>
<biblScope unit="page" to="184">184</biblScope>
</imprint>
</monogr>
<idno type="istex">E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25</idno>
<idno type="DOI">10.1016/S0165-0173(98)00037-X</idno>
<idno type="PII">S0165-0173(98)00037-X</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Recent improvements in measurement techniques and mathematical representations for eye, head and body movement have enhanced our appreciation of the complexity of spatial orientation and locomotion in three-dimensional space. The shortcomings of present measurement techniques, and their solution with emerging technologies are described. The prolonged microgravity conditions on the space station provide a unique opportunity to investigate these three-dimensional aspects of the vestibular and oculomotor systems, and in particular, the role of the otolith afferences. While the canal–ocular responses and their central pathways are reasonably well understood, the community has only recently become aware of the variety of functions fulfilled by otolith-mediated information, i.e., translational otolith–ocular reflex, inertial processing, gravitational reference, vergence control. Recent results, largely from experiments performed on the Mir Station, where the emphasis was on the otolith contribution to the vestibulo-ocular response mechanisms, are reviewed.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Three-dimensional vestibulo-ocular reflex</term>
</item>
<item>
<term>Otolith–ocular reflex</term>
</item>
<item>
<term>Spatial orientation</term>
</item>
<item>
<term>Microgravity</term>
</item>
<item>
<term>Ocular torsion</term>
</item>
<item>
<term>Eye movement measurement</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>BRESR</jid>
<aid>97045</aid>
<ce:pii>S0165-0173(98)00037-X</ce:pii>
<ce:doi>10.1016/S0165-0173(98)00037-X</ce:doi>
<ce:copyright year="1998" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Short review</ce:textfn>
</ce:dochead>
<ce:title>Vestibulo-oculomotor research and measurement technology for the space station era</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Andrew H</ce:given-name>
<ce:surname>Clarke</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Benjamin Franklin Vestibular Lab, Freie Universität Berlin, Berlin, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Labor für experimentelle Gleichgewichtsforschung, Hals- Nasen- und Ohrenklinik, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin. Fax: +49-30-834-2116; E-mail: clarke@zedat.fu-berlin.de</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Recent improvements in measurement techniques and mathematical representations for eye, head and body movement have enhanced our appreciation of the complexity of spatial orientation and locomotion in three-dimensional space. The shortcomings of present measurement techniques, and their solution with emerging technologies are described. The prolonged microgravity conditions on the space station provide a unique opportunity to investigate these three-dimensional aspects of the vestibular and oculomotor systems, and in particular, the role of the otolith afferences. While the canal–ocular responses and their central pathways are reasonably well understood, the community has only recently become aware of the variety of functions fulfilled by otolith-mediated information, i.e., translational otolith–ocular reflex, inertial processing, gravitational reference, vergence control. Recent results, largely from experiments performed on the Mir Station, where the emphasis was on the otolith contribution to the vestibulo-ocular response mechanisms, are reviewed.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Three-dimensional vestibulo-ocular reflex</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Otolith–ocular reflex</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Spatial orientation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Microgravity</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Ocular torsion</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Eye movement measurement</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Vestibulo-oculomotor research and measurement technology for the space station era</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Vestibulo-oculomotor research and measurement technology for the space station era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew H</namePart>
<namePart type="family">Clarke</namePart>
<affiliation>Benjamin Franklin Vestibular Lab, Freie Universität Berlin, Berlin, Germany</affiliation>
<description>Labor für experimentelle Gleichgewichtsforschung, Hals- Nasen- und Ohrenklinik, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin. Fax: +49-30-834-2116; E-mail: clarke@zedat.fu-berlin.de</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Recent improvements in measurement techniques and mathematical representations for eye, head and body movement have enhanced our appreciation of the complexity of spatial orientation and locomotion in three-dimensional space. The shortcomings of present measurement techniques, and their solution with emerging technologies are described. The prolonged microgravity conditions on the space station provide a unique opportunity to investigate these three-dimensional aspects of the vestibular and oculomotor systems, and in particular, the role of the otolith afferences. While the canal–ocular responses and their central pathways are reasonably well understood, the community has only recently become aware of the variety of functions fulfilled by otolith-mediated information, i.e., translational otolith–ocular reflex, inertial processing, gravitational reference, vergence control. Recent results, largely from experiments performed on the Mir Station, where the emphasis was on the otolith contribution to the vestibulo-ocular response mechanisms, are reviewed.</abstract>
<note type="content">Section title: Short review</note>
<note type="content">Fig. 1: Principle of operation of the video-oculography technique for three-dimensional eye movement measurement. The video images of the eyes are acquired by miniaturised video cameras integrated into a head-mounted assembly; infrared diode sources mounted concentrically with the sensor lens provides the necessary lighting. The centre-of-pupil is estimated by approximating its boundary as a circle. Further processing of the orthographic projection of the eyeball onto the camera image plane performs geometric compensation as the eyeball assumes secondary or tertiary positions [34, 52]. For each video image, the contrast profile around a pre-selected angular segment of the natural iris is extracted. This signature is defined uniquely by its radius from centre-of-pupil and angular range. Polar correlation of each signature against a reference yields a direct measure of ocular torsion. The measurement of ocular torsion is thus derived solely from the natural luminance structure of the iris pigmentation.</note>
<note type="content">Fig. 2: Eye tracking with high-speed imaging devices. An example is shown of realtime, online data acquired at 400 image/s (horizontal component of eye movement), as measured using novel image-processing technology. The highlight illustrates the temporal resolution of fast phases (saccades).</note>
<note type="content">Fig. 3: Three-dimensional representation of the VOR. The unity matrix represents the ideal case with zero crosstalk between components. The matrices for active and passive head rotations (eye velocity/head velocity) were calculated from data sets involving yaw, pitch and roll rotation of the head, as illustrated by the example on the left.</note>
<note type="content">Fig. 4: Three-dimensional vestibulo-ocular response during active head roll. Preflight and inflight recordings of three-dimensional eye movement during active head roll oscillation (0.32 Hz). The techniques for eye and head movement measurement are described in the text. Head movement (not shown) were near identical in each measurement session. The preflight example (A) illustrates the typical eye movement response, involving sinusoidal modulation of all three components (vertical, horizontal, torsional). The example (B), recorded in space, illustrates the clear reduction in the vertical and horizontal components, presumably due to the lack of gravity loading to the otolith receptors. In (C), recorded 11 h after landing, a re-generation of the vertical and horizontal components, indicated by the strong saccading of the horizontal component, is evident. The response measured 9 days after landing (D) again resembles the preflight recording (A).</note>
<note type="content">Fig. 5: Ocular torsion induced by active head tilt. Examples are shown from active head tilts (approx. 30° to left) performed during preflight and inflight testing. The tonic change in ocular torsional position (ocular counter-roll), which is attributed to the otolith afferences, is absent in the 0-g response.</note>
<note type="content">Fig. 6: Otolith–ocular response to unilateral radial acceleration. During constant angular velocity around the earth-vertical axis, the subject is displaced laterally (±3.5 cm left/right). This aligns the left labyrinth with the axis of rotation, while the right is subject to the radial acceleration and vice versa. For a constant angular velocity rotation of 300°/s, the radial acceleration amounts to 0.19 g, equivalent to 11° tilt of GIA for the eccentric labyrinth. The traces represent averaged stimulus (dotted) and averaged torsional responses for the right and left over 10 cycles of displacement.</note>
<subject>
<genre>Keywords</genre>
<topic>Three-dimensional vestibulo-ocular reflex</topic>
<topic>Otolith–ocular reflex</topic>
<topic>Spatial orientation</topic>
<topic>Microgravity</topic>
<topic>Ocular torsion</topic>
<topic>Eye movement measurement</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Brain Research Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>BRESR</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199811</dateIssued>
</originInfo>
<identifier type="ISSN">0165-0173</identifier>
<identifier type="PII">S0165-0173(00)X0021-5</identifier>
<part>
<date>199811</date>
<detail type="volume">
<number>28</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>234</end>
</extent>
<extent unit="pages">
<start>173</start>
<end>184</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25</identifier>
<identifier type="DOI">10.1016/S0165-0173(98)00037-X</identifier>
<identifier type="PII">S0165-0173(98)00037-X</identifier>
<accessCondition type="use and reproduction" contentType="">© 1998Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1998</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">NEUROSCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000842 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000842 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E2D5DB6E0A9D25B15C33FDD5C0D3DA01E042EC25
   |texte=   Vestibulo-oculomotor research and measurement technology for the space station era
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024