Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How haptic size sensations improve distance perception.

Identifieur interne : 000E33 ( PubMed/Curation ); précédent : 000E32; suivant : 000E34

How haptic size sensations improve distance perception.

Auteurs : Peter W. Battaglia [États-Unis] ; Daniel Kersten ; Paul R. Schrater

Source :

RBID : pubmed:21738457

English descriptors

Abstract

Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual "posterior sampling". In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information.

DOI: 10.1371/journal.pcbi.1002080
PubMed: 21738457

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21738457

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How haptic size sensations improve distance perception.</title>
<author>
<name sortKey="Battaglia, Peter W" sort="Battaglia, Peter W" uniqKey="Battaglia P" first="Peter W" last="Battaglia">Peter W. Battaglia</name>
<affiliation wicri:level="1">
<nlm:affiliation>BCS and CSAIL, MIT, Cambridge, Massachusetts, United States of America. pbatt@mit.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BCS and CSAIL, MIT, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Daniel" sort="Kersten, Daniel" uniqKey="Kersten D" first="Daniel" last="Kersten">Daniel Kersten</name>
</author>
<author>
<name sortKey="Schrater, Paul R" sort="Schrater, Paul R" uniqKey="Schrater P" first="Paul R" last="Schrater">Paul R. Schrater</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1371/journal.pcbi.1002080</idno>
<idno type="RBID">pubmed:21738457</idno>
<idno type="pmid">21738457</idno>
<idno type="wicri:Area/PubMed/Corpus">000E33</idno>
<idno type="wicri:Area/PubMed/Curation">000E33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How haptic size sensations improve distance perception.</title>
<author>
<name sortKey="Battaglia, Peter W" sort="Battaglia, Peter W" uniqKey="Battaglia P" first="Peter W" last="Battaglia">Peter W. Battaglia</name>
<affiliation wicri:level="1">
<nlm:affiliation>BCS and CSAIL, MIT, Cambridge, Massachusetts, United States of America. pbatt@mit.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BCS and CSAIL, MIT, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Daniel" sort="Kersten, Daniel" uniqKey="Kersten D" first="Daniel" last="Kersten">Daniel Kersten</name>
</author>
<author>
<name sortKey="Schrater, Paul R" sort="Schrater, Paul R" uniqKey="Schrater P" first="Paul R" last="Schrater">Paul R. Schrater</name>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Bayes Theorem</term>
<term>Cognition</term>
<term>Computational Biology (methods)</term>
<term>Decision Making</term>
<term>Distance Perception (physiology)</term>
<term>Humans</term>
<term>Touch Perception (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Distance Perception</term>
<term>Touch Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Bayes Theorem</term>
<term>Cognition</term>
<term>Decision Making</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual "posterior sampling". In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21738457</PMID>
<DateCreated>
<Year>2011</Year>
<Month>07</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>How haptic size sensations improve distance perception.</ArticleTitle>
<Pagination>
<MedlinePgn>e1002080</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1002080</ELocationID>
<Abstract>
<AbstractText>Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual "posterior sampling". In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Battaglia</LastName>
<ForeName>Peter W</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>BCS and CSAIL, MIT, Cambridge, Massachusetts, United States of America. pbatt@mit.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kersten</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schrater</LastName>
<ForeName>Paul R</ForeName>
<Initials>PR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32EY019228-02</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01EY015261</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Sci. 2014 May-Jun;38(4):599-637</RefSource>
<PMID Version="1">24467492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Psychol. 2004;55:271-304</RefSource>
<PMID Version="1">14744217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Feb;91(2):1050-63</RefSource>
<PMID Version="1">14561687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1966 Jun;79(2):234-41</RefSource>
<PMID Version="1">5915906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1970 Mar;83(1):40-54</RefSource>
<PMID Version="1">5449391</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1970 Nov 26;11(4):411-30</RefSource>
<PMID Version="1">5496938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1973;2(3):267-85</RefSource>
<PMID Version="1">4794124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Child Dev. 1982 Oct;53(5):1285-90</RefSource>
<PMID Version="1">7140431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1992 Aug;32(8):1447-60</RefSource>
<PMID Version="1">1455718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1999 Mar;39(5):975-86</RefSource>
<PMID Version="1">10341949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1951 Jan;64(1):54-67</RefSource>
<PMID Version="1">14819380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1953 Jul;60(4):223-31</RefSource>
<PMID Version="1">13089000</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Bull. 1961 Nov;58:491-514</RefSource>
<PMID Version="1">13890453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1963 Dec;76:537-53</RefSource>
<PMID Version="1">14082652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2004 Dec;27(12):712-9</RefSource>
<PMID Version="1">15541511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2006 Jul;10(7):319-26</RefSource>
<PMID Version="1">16807063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2006 Sep 7;273(1598):2159-68</RefSource>
<PMID Version="1">16901835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(9):e943</RefSource>
<PMID Version="1">17895984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Comput. 2007 Dec;19(12):3335-55</RefSource>
<PMID Version="1">17970656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2007;7(5):7.1-14</RefSource>
<PMID Version="1">18217847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(5):12.1-19</RefSource>
<PMID Version="1">18842083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2010 Mar;14(3):119-30</RefSource>
<PMID Version="1">20153683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2010 Mar;6(3):e1000697</RefSource>
<PMID Version="1">20221263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2010;6(8). pii: e1000871. doi: 10.1371/journal.pcbi.1000871</RefSource>
<PMID Version="1">20700493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1391-7</RefSource>
<PMID Version="1">12868643</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001499">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003071">Cognition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019295">Computational Biology</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003657">Decision Making</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004215">Distance Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3127804</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>12</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>4</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2011</Year>
<Month>6</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pcbi.1002080</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-11-00013</ArticleId>
<ArticleId IdType="pubmed">21738457</ArticleId>
<ArticleId IdType="pmc">PMC3127804</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000E33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21738457
   |texte=   How haptic size sensations improve distance perception.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21738457" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024