Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Augmented reality and haptic interfaces for robot-assisted surgery.

Identifieur interne : 000D75 ( PubMed/Curation ); précédent : 000D74; suivant : 000D76

Augmented reality and haptic interfaces for robot-assisted surgery.

Auteurs : Tomonori Yamamoto [États-Unis] ; Niki Abolhassani ; Sung Jung ; Allison M. Okamura ; Timothy N. Judkins

Source :

RBID : pubmed:22069247

English descriptors

Abstract

Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification.

DOI: 10.1002/rcs.421
PubMed: 22069247

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22069247

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Augmented reality and haptic interfaces for robot-assisted surgery.</title>
<author>
<name sortKey="Yamamoto, Tomonori" sort="Yamamoto, Tomonori" uniqKey="Yamamoto T" first="Tomonori" last="Yamamoto">Tomonori Yamamoto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA. tyama@jhu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Abolhassani, Niki" sort="Abolhassani, Niki" uniqKey="Abolhassani N" first="Niki" last="Abolhassani">Niki Abolhassani</name>
</author>
<author>
<name sortKey="Jung, Sung" sort="Jung, Sung" uniqKey="Jung S" first="Sung" last="Jung">Sung Jung</name>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M" last="Okamura">Allison M. Okamura</name>
</author>
<author>
<name sortKey="Judkins, Timothy N" sort="Judkins, Timothy N" uniqKey="Judkins T" first="Timothy N" last="Judkins">Timothy N. Judkins</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1002/rcs.421</idno>
<idno type="RBID">pubmed:22069247</idno>
<idno type="pmid">22069247</idno>
<idno type="wicri:Area/PubMed/Corpus">000D75</idno>
<idno type="wicri:Area/PubMed/Curation">000D75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Augmented reality and haptic interfaces for robot-assisted surgery.</title>
<author>
<name sortKey="Yamamoto, Tomonori" sort="Yamamoto, Tomonori" uniqKey="Yamamoto T" first="Tomonori" last="Yamamoto">Tomonori Yamamoto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA. tyama@jhu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Abolhassani, Niki" sort="Abolhassani, Niki" uniqKey="Abolhassani N" first="Niki" last="Abolhassani">Niki Abolhassani</name>
</author>
<author>
<name sortKey="Jung, Sung" sort="Jung, Sung" uniqKey="Jung S" first="Sung" last="Jung">Sung Jung</name>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M" last="Okamura">Allison M. Okamura</name>
</author>
<author>
<name sortKey="Judkins, Timothy N" sort="Judkins, Timothy N" uniqKey="Judkins T" first="Timothy N" last="Judkins">Timothy N. Judkins</name>
</author>
</analytic>
<series>
<title level="j">The international journal of medical robotics + computer assisted surgery : MRCAS</title>
<idno type="eISSN">1478-596X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Male</term>
<term>Minimally Invasive Surgical Procedures (methods)</term>
<term>Models, Statistical</term>
<term>Prostate (pathology)</term>
<term>Reproducibility of Results</term>
<term>Robotics (instrumentation)</term>
<term>Software</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
<term>Telemedicine (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Imaging, Three-Dimensional</term>
<term>Minimally Invasive Surgical Procedures</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Prostate</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Male</term>
<term>Models, Statistical</term>
<term>Reproducibility of Results</term>
<term>Software</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22069247</PMID>
<DateCreated>
<Year>2012</Year>
<Month>03</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1478-596X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>The international journal of medical robotics + computer assisted surgery : MRCAS</Title>
<ISOAbbreviation>Int J Med Robot</ISOAbbreviation>
</Journal>
<ArticleTitle>Augmented reality and haptic interfaces for robot-assisted surgery.</ArticleTitle>
<Pagination>
<MedlinePgn>45-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/rcs.421</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">An interoperable interface for teleoperated robot-assisted minimally invasive surgery was developed to provide haptic feedback and augmented visual feedback using three-dimensional (3D) graphical overlays. The software framework consists of control and command software, robot plug-ins, image processing plug-ins and 3D surface reconstructions.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The feasibility of the interface was demonstrated in two tasks performed with artificial tissue: palpation to detect hard lumps and surface tracing, using vision-based forbidden-region virtual fixtures to prevent the patient-side manipulator from entering unwanted regions of the workspace.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The interoperable interface enables fast development and successful implementation of effective haptic feedback methods in teleoperation.</AbstractText>
<CopyrightInformation>Copyright © 2011 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Tomonori</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA. tyama@jhu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abolhassani</LastName>
<ForeName>Niki</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Sung</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Okamura</LastName>
<ForeName>Allison M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Judkins</LastName>
<ForeName>Timothy N</ForeName>
<Initials>TN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Med Robot</MedlineTA>
<NlmUniqueID>101250764</NlmUniqueID>
<ISSNLinking>1478-5951</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019060">Minimally Invasive Surgical Procedures</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015233">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011467">Prostate</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012984">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013499">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017216">Telemedicine</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>6</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>7</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>11</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/rcs.421</ArticleId>
<ArticleId IdType="pubmed">22069247</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000D75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22069247
   |texte=   Augmented reality and haptic interfaces for robot-assisted surgery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22069247" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024