Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.

Identifieur interne : 001237 ( PubMed/Corpus ); précédent : 001236; suivant : 001238

Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.

Auteurs : Sergei V. Adamovich ; Gerard G. Fluet ; Alma S. Merians ; Abraham Mathai ; Qinyin Qiu

Source :

RBID : pubmed:19666345

English descriptors

Abstract

Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study.

DOI: 10.1109/TNSRE.2009.2028830
PubMed: 19666345

Links to Exploration step

pubmed:19666345

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.</title>
<author>
<name sortKey="Adamovich, Sergei V" sort="Adamovich, Sergei V" uniqKey="Adamovich S" first="Sergei V" last="Adamovich">Sergei V. Adamovich</name>
<affiliation>
<nlm:affiliation>New Jersey Institute of Technology, Newark, NJ 07102, USA. sergei.adamovich@njit.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fluet, Gerard G" sort="Fluet, Gerard G" uniqKey="Fluet G" first="Gerard G" last="Fluet">Gerard G. Fluet</name>
</author>
<author>
<name sortKey="Merians, Alma S" sort="Merians, Alma S" uniqKey="Merians A" first="Alma S" last="Merians">Alma S. Merians</name>
</author>
<author>
<name sortKey="Mathai, Abraham" sort="Mathai, Abraham" uniqKey="Mathai A" first="Abraham" last="Mathai">Abraham Mathai</name>
</author>
<author>
<name sortKey="Qiu, Qinyin" sort="Qiu, Qinyin" uniqKey="Qiu Q" first="Qinyin" last="Qiu">Qinyin Qiu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1109/TNSRE.2009.2028830</idno>
<idno type="RBID">pubmed:19666345</idno>
<idno type="pmid">19666345</idno>
<idno type="wicri:Area/PubMed/Corpus">001237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.</title>
<author>
<name sortKey="Adamovich, Sergei V" sort="Adamovich, Sergei V" uniqKey="Adamovich S" first="Sergei V" last="Adamovich">Sergei V. Adamovich</name>
<affiliation>
<nlm:affiliation>New Jersey Institute of Technology, Newark, NJ 07102, USA. sergei.adamovich@njit.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fluet, Gerard G" sort="Fluet, Gerard G" uniqKey="Fluet G" first="Gerard G" last="Fluet">Gerard G. Fluet</name>
</author>
<author>
<name sortKey="Merians, Alma S" sort="Merians, Alma S" uniqKey="Merians A" first="Alma S" last="Merians">Alma S. Merians</name>
</author>
<author>
<name sortKey="Mathai, Abraham" sort="Mathai, Abraham" uniqKey="Mathai A" first="Abraham" last="Mathai">Abraham Mathai</name>
</author>
<author>
<name sortKey="Qiu, Qinyin" sort="Qiu, Qinyin" uniqKey="Qiu Q" first="Qinyin" last="Qiu">Qinyin Qiu</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</title>
<idno type="eISSN">1558-0210</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer-Assisted Instruction (instrumentation)</term>
<term>Computer-Assisted Instruction (methods)</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional (instrumentation)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Paresis (rehabilitation)</term>
<term>Robotics (instrumentation)</term>
<term>Therapy, Computer-Assisted (instrumentation)</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Computer-Assisted Instruction</term>
<term>Imaging, Three-Dimensional</term>
<term>Robotics</term>
<term>Therapy, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computer-Assisted Instruction</term>
<term>Imaging, Three-Dimensional</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Paresis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Humans</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19666345</PMID>
<DateCreated>
<Year>2009</Year>
<Month>11</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-0210</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</Title>
<ISOAbbreviation>IEEE Trans Neural Syst Rehabil Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.</ArticleTitle>
<Pagination>
<MedlinePgn>512-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TNSRE.2009.2028830</ELocationID>
<Abstract>
<AbstractText>Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adamovich</LastName>
<ForeName>Sergei V</ForeName>
<Initials>SV</Initials>
<AffiliationInfo>
<Affiliation>New Jersey Institute of Technology, Newark, NJ 07102, USA. sergei.adamovich@njit.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fluet</LastName>
<ForeName>Gerard G</ForeName>
<Initials>GG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merians</LastName>
<ForeName>Alma S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mathai</LastName>
<ForeName>Abraham</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Qinyin</ForeName>
<Initials>Q</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>H133E050011</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HD 42161</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HD 58301</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HD058301</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HD058301-01A2</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Neural Syst Rehabil Eng</MedlineTA>
<NlmUniqueID>101097023</NlmUniqueID>
<ISSNLinking>1534-4320</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 2000 Jul;74(1):27-55</RefSource>
<PMID Version="1">10873519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3475-8</RefSource>
<PMID Version="1">19163457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2001;104(4):1027-41</RefSource>
<PMID Version="1">11457588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2002 Sep;82(9):898-915</RefSource>
<PMID Version="1">12201804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Sep 15;22(18):8297-304</RefSource>
<PMID Version="1">12223584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2003 Apr;84(4):477-82</RefSource>
<PMID Version="1">12690583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2004 Apr;51(4):636-46</RefSource>
<PMID Version="1">15072218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2004 Jul;85(7):1076-83</RefSource>
<PMID Version="1">15241753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biomed Eng. 2004;6:497-525</RefSource>
<PMID Version="1">15255778</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurophysiol. 2004 Mar-Apr;21(2):124-31</RefSource>
<PMID Version="1">15284604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2004 Sep;7(9):907-15</RefSource>
<PMID Version="1">15332089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 1987 Feb;67(2):206-7</RefSource>
<PMID Version="1">3809245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 1992 Aug;23(8):1084-9</RefSource>
<PMID Version="1">1636182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 1992 Sep;72(9):624-33</RefSource>
<PMID Version="1">1508970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1997 Nov;120 ( Pt 11):2093-111</RefSource>
<PMID Version="1">9397024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2005 Apr;75(5):309-20</RefSource>
<PMID Version="1">15885874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cyberpsychol Behav. 2005 Jun;8(3):187-211; discussion 212-9</RefSource>
<PMID Version="1">15971970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2005 Sep;19(3):194-205</RefSource>
<PMID Version="1">16093410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Jan;168(3):368-83</RefSource>
<PMID Version="1">16249912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 2006 May 15;244(1-2):89-95</RefSource>
<PMID Version="1">16476449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2006 Jun;20(2):252-67</RefSource>
<PMID Version="1">16679503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Inst Mech Eng H. 2006 Aug;220(6):715-8</RefSource>
<PMID Version="1">16961191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):605-18</RefSource>
<PMID Version="1">17123202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):631-42</RefSource>
<PMID Version="1">17123204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2007;4:7</RefSource>
<PMID Version="1">17381842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2007 Sep;45(9):887-900</RefSource>
<PMID Version="1">17674069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):327-35</RefSource>
<PMID Version="1">17894265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):336-46</RefSource>
<PMID Version="1">17894266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Dec;15(4):560-9</RefSource>
<PMID Version="1">18198714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NeuroRehabilitation. 2008;23(1):81-7</RefSource>
<PMID Version="1">18356591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2008 Jun;39(6):1786-92</RefSource>
<PMID Version="1">18467648</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):286-97</RefSource>
<PMID Version="1">18586608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2008 Jul-Aug;22(4):321-9</RefSource>
<PMID Version="1">18326888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2000 Oct;31(10):2390-5</RefSource>
<PMID Version="1">11022069</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003194">Computer-Assisted Instruction</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019544">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010291">Paresis</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013813">Therapy, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS170323</OtherID>
<OtherID Source="NLM">PMC2843820</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2009</Year>
<Month>8</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TNSRE.2009.2028830</ArticleId>
<ArticleId IdType="pubmed">19666345</ArticleId>
<ArticleId IdType="pmc">PMC2843820</ArticleId>
<ArticleId IdType="mid">NIHMS170323</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19666345
   |texte=   Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19666345" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024