Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

EEG correlates of haptic feedback in a visuomotor tracking task.

Identifieur interne : 000C67 ( PubMed/Corpus ); précédent : 000C66; suivant : 000C68

EEG correlates of haptic feedback in a visuomotor tracking task.

Auteurs : Chun-Ling Lin ; Fu-Zen Shaw ; Kuu-Young Young ; Chin-Teng Lin ; Tzyy-Ping Jung

Source :

RBID : pubmed:22348883

English descriptors

Abstract

This study investigates the temporal brain dynamics associated with haptic feedback in a visuomotor tracking task. Haptic feedback with deviation-related forces was used throughout tracking experiments in which subjects' behavioral responses and electroencephalogram (EEG) data were simultaneously measured. Independent component analysis was employed to decompose the acquired EEG signals into temporally independent time courses arising from distinct brain sources. Clustering analysis was used to extract independent components that were comparable across participants. The resultant independent brain processes were further analyzed via time-frequency analysis (event-related spectral perturbation) and event-related coherence (ERCOH) to contrast brain activity during tracking experiments with or without haptic feedback. Across subjects, in epochs with haptic feedback, components with equivalent dipoles in or near the right motor region exhibited greater alpha band power suppression. Components with equivalent dipoles in or near the left frontal, central, left motor, right motor, and parietal regions exhibited greater beta-band power suppression, while components with equivalent dipoles in or near the left frontal, left motor, and right motor regions showed greater gamma-band power suppression relative to non-haptic conditions. In contrast, the right occipital component cluster exhibited less beta-band power suppression in epochs with haptic feedback compared to non-haptic conditions. The results of ERCOH analysis of the six component clusters showed that there were significant increases in coherence between different brain networks in response to haptic feedback relative to the coherence observed when haptic feedback was not present. The results of this study provide novel insight into the effects of haptic feedback on the brain and may aid the development of new tools to facilitate the learning of motor skills.

DOI: 10.1016/j.neuroimage.2012.02.008
PubMed: 22348883

Links to Exploration step

pubmed:22348883

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">EEG correlates of haptic feedback in a visuomotor tracking task.</title>
<author>
<name sortKey="Lin, Chun Ling" sort="Lin, Chun Ling" uniqKey="Lin C" first="Chun-Ling" last="Lin">Chun-Ling Lin</name>
<affiliation>
<nlm:affiliation>Brain Research Center, University System of Taiwan, Hsinchu, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Fu Zen" sort="Shaw, Fu Zen" uniqKey="Shaw F" first="Fu-Zen" last="Shaw">Fu-Zen Shaw</name>
</author>
<author>
<name sortKey="Young, Kuu Young" sort="Young, Kuu Young" uniqKey="Young K" first="Kuu-Young" last="Young">Kuu-Young Young</name>
</author>
<author>
<name sortKey="Lin, Chin Teng" sort="Lin, Chin Teng" uniqKey="Lin C" first="Chin-Teng" last="Lin">Chin-Teng Lin</name>
</author>
<author>
<name sortKey="Jung, Tzyy Ping" sort="Jung, Tzyy Ping" uniqKey="Jung T" first="Tzyy-Ping" last="Jung">Tzyy-Ping Jung</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1016/j.neuroimage.2012.02.008</idno>
<idno type="RBID">pubmed:22348883</idno>
<idno type="pmid">22348883</idno>
<idno type="wicri:Area/PubMed/Corpus">000C67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">EEG correlates of haptic feedback in a visuomotor tracking task.</title>
<author>
<name sortKey="Lin, Chun Ling" sort="Lin, Chun Ling" uniqKey="Lin C" first="Chun-Ling" last="Lin">Chun-Ling Lin</name>
<affiliation>
<nlm:affiliation>Brain Research Center, University System of Taiwan, Hsinchu, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Fu Zen" sort="Shaw, Fu Zen" uniqKey="Shaw F" first="Fu-Zen" last="Shaw">Fu-Zen Shaw</name>
</author>
<author>
<name sortKey="Young, Kuu Young" sort="Young, Kuu Young" uniqKey="Young K" first="Kuu-Young" last="Young">Kuu-Young Young</name>
</author>
<author>
<name sortKey="Lin, Chin Teng" sort="Lin, Chin Teng" uniqKey="Lin C" first="Chin-Teng" last="Lin">Chin-Teng Lin</name>
</author>
<author>
<name sortKey="Jung, Tzyy Ping" sort="Jung, Tzyy Ping" uniqKey="Jung T" first="Tzyy-Ping" last="Jung">Tzyy-Ping Jung</name>
</author>
</analytic>
<series>
<title level="j">NeuroImage</title>
<idno type="eISSN">1095-9572</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brain (physiology)</term>
<term>Cluster Analysis</term>
<term>Electroencephalography</term>
<term>Feedback</term>
<term>Female</term>
<term>Humans</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Motor Skills (physiology)</term>
<term>Principal Component Analysis</term>
<term>Signal Processing, Computer-Assisted</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Learning</term>
<term>Motor Skills</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Electroencephalography</term>
<term>Feedback</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Principal Component Analysis</term>
<term>Signal Processing, Computer-Assisted</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study investigates the temporal brain dynamics associated with haptic feedback in a visuomotor tracking task. Haptic feedback with deviation-related forces was used throughout tracking experiments in which subjects' behavioral responses and electroencephalogram (EEG) data were simultaneously measured. Independent component analysis was employed to decompose the acquired EEG signals into temporally independent time courses arising from distinct brain sources. Clustering analysis was used to extract independent components that were comparable across participants. The resultant independent brain processes were further analyzed via time-frequency analysis (event-related spectral perturbation) and event-related coherence (ERCOH) to contrast brain activity during tracking experiments with or without haptic feedback. Across subjects, in epochs with haptic feedback, components with equivalent dipoles in or near the right motor region exhibited greater alpha band power suppression. Components with equivalent dipoles in or near the left frontal, central, left motor, right motor, and parietal regions exhibited greater beta-band power suppression, while components with equivalent dipoles in or near the left frontal, left motor, and right motor regions showed greater gamma-band power suppression relative to non-haptic conditions. In contrast, the right occipital component cluster exhibited less beta-band power suppression in epochs with haptic feedback compared to non-haptic conditions. The results of ERCOH analysis of the six component clusters showed that there were significant increases in coherence between different brain networks in response to haptic feedback relative to the coherence observed when haptic feedback was not present. The results of this study provide novel insight into the effects of haptic feedback on the brain and may aid the development of new tools to facilitate the learning of motor skills.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22348883</PMID>
<DateCreated>
<Year>2012</Year>
<Month>04</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9572</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>NeuroImage</Title>
<ISOAbbreviation>Neuroimage</ISOAbbreviation>
</Journal>
<ArticleTitle>EEG correlates of haptic feedback in a visuomotor tracking task.</ArticleTitle>
<Pagination>
<MedlinePgn>2258-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroimage.2012.02.008</ELocationID>
<Abstract>
<AbstractText>This study investigates the temporal brain dynamics associated with haptic feedback in a visuomotor tracking task. Haptic feedback with deviation-related forces was used throughout tracking experiments in which subjects' behavioral responses and electroencephalogram (EEG) data were simultaneously measured. Independent component analysis was employed to decompose the acquired EEG signals into temporally independent time courses arising from distinct brain sources. Clustering analysis was used to extract independent components that were comparable across participants. The resultant independent brain processes were further analyzed via time-frequency analysis (event-related spectral perturbation) and event-related coherence (ERCOH) to contrast brain activity during tracking experiments with or without haptic feedback. Across subjects, in epochs with haptic feedback, components with equivalent dipoles in or near the right motor region exhibited greater alpha band power suppression. Components with equivalent dipoles in or near the left frontal, central, left motor, right motor, and parietal regions exhibited greater beta-band power suppression, while components with equivalent dipoles in or near the left frontal, left motor, and right motor regions showed greater gamma-band power suppression relative to non-haptic conditions. In contrast, the right occipital component cluster exhibited less beta-band power suppression in epochs with haptic feedback compared to non-haptic conditions. The results of ERCOH analysis of the six component clusters showed that there were significant increases in coherence between different brain networks in response to haptic feedback relative to the coherence observed when haptic feedback was not present. The results of this study provide novel insight into the effects of haptic feedback on the brain and may aid the development of new tools to facilitate the learning of motor skills.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Chun-Ling</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>Brain Research Center, University System of Taiwan, Hsinchu, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shaw</LastName>
<ForeName>Fu-Zen</ForeName>
<Initials>FZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Kuu-Young</ForeName>
<Initials>KY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Chin-Teng</ForeName>
<Initials>CT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Tzyy-Ping</ForeName>
<Initials>TP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroimage</MedlineTA>
<NlmUniqueID>9215515</NlmUniqueID>
<ISSNLinking>1053-8119</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016000">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004569">Electroencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007858">Learning</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009048">Motor Skills</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025341">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012815">Signal Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>9</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>2</Month>
<Day>4</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>2</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1053-8119(12)00185-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroimage.2012.02.008</ArticleId>
<ArticleId IdType="pubmed">22348883</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22348883
   |texte=   EEG correlates of haptic feedback in a visuomotor tracking task.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22348883" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024