Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Learning a locomotor task: with or without errors?

Identifieur interne : 000732 ( PubMed/Corpus ); précédent : 000731; suivant : 000733

Learning a locomotor task: with or without errors?

Auteurs : Laura Marchal-Crespo ; Jasmin Schneider ; Lukas Jaeger ; Robert Riener

Source :

RBID : pubmed:24594267

English descriptors

Abstract

Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task.

DOI: 10.1186/1743-0003-11-25
PubMed: 24594267

Links to Exploration step

pubmed:24594267

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Learning a locomotor task: with or without errors?</title>
<author>
<name sortKey="Marchal Crespo, Laura" sort="Marchal Crespo, Laura" uniqKey="Marchal Crespo L" first="Laura" last="Marchal-Crespo">Laura Marchal-Crespo</name>
<affiliation>
<nlm:affiliation>Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems IRIS, ETH Zurich, Zurich, Switzerland. laura.marchal@hest.ethz.ch.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Jasmin" sort="Schneider, Jasmin" uniqKey="Schneider J" first="Jasmin" last="Schneider">Jasmin Schneider</name>
</author>
<author>
<name sortKey="Jaeger, Lukas" sort="Jaeger, Lukas" uniqKey="Jaeger L" first="Lukas" last="Jaeger">Lukas Jaeger</name>
</author>
<author>
<name sortKey="Riener, Robert" sort="Riener, Robert" uniqKey="Riener R" first="Robert" last="Riener">Robert Riener</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.1186/1743-0003-11-25</idno>
<idno type="RBID">pubmed:24594267</idno>
<idno type="pmid">24594267</idno>
<idno type="wicri:Area/PubMed/Corpus">000732</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Learning a locomotor task: with or without errors?</title>
<author>
<name sortKey="Marchal Crespo, Laura" sort="Marchal Crespo, Laura" uniqKey="Marchal Crespo L" first="Laura" last="Marchal-Crespo">Laura Marchal-Crespo</name>
<affiliation>
<nlm:affiliation>Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems IRIS, ETH Zurich, Zurich, Switzerland. laura.marchal@hest.ethz.ch.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Jasmin" sort="Schneider, Jasmin" uniqKey="Schneider J" first="Jasmin" last="Schneider">Jasmin Schneider</name>
</author>
<author>
<name sortKey="Jaeger, Lukas" sort="Jaeger, Lukas" uniqKey="Jaeger L" first="Lukas" last="Jaeger">Lukas Jaeger</name>
</author>
<author>
<name sortKey="Riener, Robert" sort="Riener, Robert" uniqKey="Riener R" first="Robert" last="Riener">Robert Riener</name>
</author>
</analytic>
<series>
<title level="j">Journal of neuroengineering and rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Brain (physiology)</term>
<term>Electromyography</term>
<term>Female</term>
<term>Humans</term>
<term>Learning (physiology)</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Motor Activity (physiology)</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Robotics (methods)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Learning</term>
<term>Motor Activity</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Electromyography</term>
<term>Female</term>
<term>Humans</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24594267</PMID>
<DateCreated>
<Year>2014</Year>
<Month>03</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>05</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-0003</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Journal of neuroengineering and rehabilitation</Title>
<ISOAbbreviation>J Neuroeng Rehabil</ISOAbbreviation>
</Journal>
<ArticleTitle>Learning a locomotor task: with or without errors?</ArticleTitle>
<Pagination>
<MedlinePgn>25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1743-0003-11-25</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG).</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marchal-Crespo</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems IRIS, ETH Zurich, Zurich, Switzerland. laura.marchal@hest.ethz.ch.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Jasmin</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jaeger</LastName>
<ForeName>Lukas</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riener</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Neuroeng Rehabil</MedlineTA>
<NlmUniqueID>101232233</NlmUniqueID>
<ISSNLinking>1743-0003</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):379-86</RefSource>
<PMID Version="1">17894270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2007 Jul;130(Pt 7):1861-72</RefSource>
<PMID Version="1">17405765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2008 Jan;55(1):322-34</RefSource>
<PMID Version="1">18232376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2009;6:5</RefSource>
<PMID Version="1">19243614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2009;6:20</RefSource>
<PMID Version="1">19531254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Mar;201(2):119-31</RefSource>
<PMID Version="1">19787345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Mar;201(2):209-20</RefSource>
<PMID Version="1">19820920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2011 Jan;91(1):48-60</RefSource>
<PMID Version="1">21051593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2011 Jul;106(1):247-58</RefSource>
<PMID Version="1">21543755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2012 Feb;216(3):473-82</RefSource>
<PMID Version="1">22108702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Int Conf Rehabil Robot. 2011;2011:5975371</RefSource>
<PMID Version="1">22275575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2012 Sep;26(7):855-60</RefSource>
<PMID Version="1">22331211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2013 Feb;20(1):21-53</RefSource>
<PMID Version="1">23132605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2013 Jul;51(7):799-809</RefSource>
<PMID Version="1">23430329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2013 Nov;231(3):277-91</RefSource>
<PMID Version="1">24013789</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2000 Jul;80(7):688-700</RefSource>
<PMID Version="1">10869131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 2000 Jul;74(1):27-55</RefSource>
<PMID Version="1">10873519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Electromyogr Kinesiol. 2000 Oct;10(5):361-74</RefSource>
<PMID Version="1">11018445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2002 Jun;9(2):185-211</RefSource>
<PMID Version="1">12120783</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2003 Apr;126(Pt 4):866-72</RefSource>
<PMID Version="1">12615644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2004 Jun;36(2):212-24</RefSource>
<PMID Version="1">15130871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1977;15(4-5):617-24</RefSource>
<PMID Version="1">896019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Mar;13(1):33-9</RefSource>
<PMID Version="1">15813404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):380-94</RefSource>
<PMID Version="1">16200761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Jan;168(3):368-83</RefSource>
<PMID Version="1">16249912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurol. 2006 Feb;19(1):84-90</RefSource>
<PMID Version="1">16415682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Feb;95(2):766-73</RefSource>
<PMID Version="1">16424453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2006 Nov;86(11):1466-78</RefSource>
<PMID Version="1">17079746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2007;4:8</RefSource>
<PMID Version="1">17391527</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):387-400</RefSource>
<PMID Version="1">17894271</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004576">Electromyography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007858">Learning</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009043">Motor Activity</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018482">Muscle, Skeletal</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3975879</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>2</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>2</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>3</Month>
<Day>4</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">1743-0003-11-25</ArticleId>
<ArticleId IdType="doi">10.1186/1743-0003-11-25</ArticleId>
<ArticleId IdType="pubmed">24594267</ArticleId>
<ArticleId IdType="pmc">PMC3975879</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000732 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000732 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24594267
   |texte=   Learning a locomotor task: with or without errors?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24594267" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024