Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural extrapolation of motion for a ball rolling down an inclined plane.

Identifieur interne : 000620 ( PubMed/Corpus ); précédent : 000619; suivant : 000621

Neural extrapolation of motion for a ball rolling down an inclined plane.

Auteurs : Barbara La Scaleia ; Francesco Lacquaniti ; Myrka Zago

Source :

RBID : pubmed:24940874

English descriptors

Abstract

It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

DOI: 10.1371/journal.pone.0099837
PubMed: 24940874

Links to Exploration step

pubmed:24940874

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neural extrapolation of motion for a ball rolling down an inclined plane.</title>
<author>
<name sortKey="La Scaleia, Barbara" sort="La Scaleia, Barbara" uniqKey="La Scaleia B" first="Barbara" last="La Scaleia">Barbara La Scaleia</name>
<affiliation>
<nlm:affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacquaniti, Francesco" sort="Lacquaniti, Francesco" uniqKey="Lacquaniti F" first="Francesco" last="Lacquaniti">Francesco Lacquaniti</name>
<affiliation>
<nlm:affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zago, Myrka" sort="Zago, Myrka" uniqKey="Zago M" first="Myrka" last="Zago">Myrka Zago</name>
<affiliation>
<nlm:affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.1371/journal.pone.0099837</idno>
<idno type="RBID">pubmed:24940874</idno>
<idno type="pmid">24940874</idno>
<idno type="wicri:Area/PubMed/Corpus">000620</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neural extrapolation of motion for a ball rolling down an inclined plane.</title>
<author>
<name sortKey="La Scaleia, Barbara" sort="La Scaleia, Barbara" uniqKey="La Scaleia B" first="Barbara" last="La Scaleia">Barbara La Scaleia</name>
<affiliation>
<nlm:affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacquaniti, Francesco" sort="Lacquaniti, Francesco" uniqKey="Lacquaniti F" first="Francesco" last="Lacquaniti">Francesco Lacquaniti</name>
<affiliation>
<nlm:affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zago, Myrka" sort="Zago, Myrka" uniqKey="Zago M" first="Myrka" last="Zago">Myrka Zago</name>
<affiliation>
<nlm:affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Brain (physiology)</term>
<term>Confidence Intervals</term>
<term>Female</term>
<term>Hand (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Motion</term>
<term>Motion Perception (physiology)</term>
<term>Movement</term>
<term>Time Factors</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Hand</term>
<term>Motion Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Confidence Intervals</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Motion</term>
<term>Movement</term>
<term>Time Factors</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24940874</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>08</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Neural extrapolation of motion for a ball rolling down an inclined plane.</ArticleTitle>
<Pagination>
<MedlinePgn>e99837</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0099837</ELocationID>
<Abstract>
<AbstractText>It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>La Scaleia</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacquaniti</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zago</LastName>
<ForeName>Myrka</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Q J Exp Psychol A. 2001 Feb;54(1):69-93</RefSource>
<PMID Version="1">11216322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(1):e4214</RefSource>
<PMID Version="1">19148302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Jan;142(2):193-207</RefSource>
<PMID Version="1">11807574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2002 Aug;28(4):963-73</RefSource>
<PMID Version="1">12190261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 Jan;148(2):196-201</RefSource>
<PMID Version="1">12520407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Motor Control. 2003 Jul;7(3):290-303</RefSource>
<PMID Version="1">12893959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2003;3(11):698-709</RefSource>
<PMID Version="1">14765954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Apr;91(4):1620-34</RefSource>
<PMID Version="1">14627663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1981;42(2):223-7</RefSource>
<PMID Version="1">7262217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1984 Oct;91(4):417-47</RefSource>
<PMID Version="1">6505114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Q J Exp Psychol A. 1983 May;35(Pt 2):333-46</RefSource>
<PMID Version="1">6571315</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1987 Mar 17;406(1-2):373-8</RefSource>
<PMID Version="1">3567636</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1987;16(1):49-59</RefSource>
<PMID Version="1">3671040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1987 Oct;94(4):427-38</RefSource>
<PMID Version="1">3317470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1989 Jan;9(1):149-59</RefSource>
<PMID Version="1">2913201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1989 May;15(2):384-93</RefSource>
<PMID Version="1">2525605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1990;19(1):57-61</RefSource>
<PMID Version="1">2336336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Psychol. 1990 Jul;22(3):342-73</RefSource>
<PMID Version="1">2376114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):669-89</RefSource>
<PMID Version="1">1500868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1992 Dec;32(12):2313-29</RefSource>
<PMID Version="1">1288008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1993 May;69(5):1443-64</RefSource>
<PMID Version="1">8509826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mem Cognit. 1993 Jul;21(4):449-57</RefSource>
<PMID Version="1">8350736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1993;22(8):917-28</RefSource>
<PMID Version="1">8190595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 1995 Jun 1;5(6):679-85</RefSource>
<PMID Version="1">7552179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Sep;78(3):1601-18</RefSource>
<PMID Version="1">9310446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1997 Oct;116(3):406-20</RefSource>
<PMID Version="1">9372290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Feb;192(4):669-82</RefSource>
<PMID Version="1">18936928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Psychol. 2009;56(4):265-73</RefSource>
<PMID Version="1">19439399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Mar;201(3):365-84</RefSource>
<PMID Version="1">19882150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Apr;201(4):875-84</RefSource>
<PMID Version="1">19949776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 May;202(3):661-7</RefSource>
<PMID Version="1">20135099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(10):e13161</RefSource>
<PMID Version="1">20949130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2011 Sep;138(1):126-34</RefSource>
<PMID Version="1">21684505</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2011;40(6):674-81</RefSource>
<PMID Version="1">21936296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Feb;107(3):766-71</RefSource>
<PMID Version="1">22090456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2012 Feb;216(4):499-514</RefSource>
<PMID Version="1">22120106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(2):e31770</RefSource>
<PMID Version="1">22384072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2012 Sep;141(1):104-11</RefSource>
<PMID Version="1">22864313</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(11):e49381</RefSource>
<PMID Version="1">23166653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2013;13(2):9</RefSource>
<PMID Version="1">23390323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(5):e63382</RefSource>
<PMID Version="1">23696822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2013 Dec;39(6):1690-9</RefSource>
<PMID Version="1">23398260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Atten Percept Psychophys. 2014 May;76(4):1106-20</RefSource>
<PMID Version="1">24470258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1997 Oct;116(3):421-33</RefSource>
<PMID Version="1">9372291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1997 Nov;120 ( Pt 11):2093-111</RefSource>
<PMID Version="1">9397024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1998 Oct;122(4):467-74</RefSource>
<PMID Version="1">9827866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Feb;93(2):1055-68</RefSource>
<PMID Version="1">15456796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1228-33</RefSource>
<PMID Version="1">15657143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2005;43(2):178-88</RefSource>
<PMID Version="1">15707903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Apr 15;308(5720):416-9</RefSource>
<PMID Version="1">15831760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Aug;94(2):1346-57</RefSource>
<PMID Version="1">15817649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2005 Oct;12(5):822-51</RefSource>
<PMID Version="1">16524000</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Mar;178(1):99-114</RefSource>
<PMID Version="1">17053910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2007;36(2):249-57</RefSource>
<PMID Version="1">17402666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Jul 4;27(27):7297-309</RefSource>
<PMID Version="1">17611282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2007;36(12):1752-68</RefSource>
<PMID Version="1">18283926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2008;37(2):317-20</RefSource>
<PMID Version="1">18456929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2008 Jun;48(14):1532-8</RefSource>
<PMID Version="1">18499213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Jul;4(7):693-4</RefSource>
<PMID Version="1">11426224</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016001">Confidence Intervals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009038">Motion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009039">Motion Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009068">Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4062474</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2014</Year>
<Month></Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>3</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>5</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0099837</ArticleId>
<ArticleId IdType="pii">PONE-D-14-11034</ArticleId>
<ArticleId IdType="pubmed">24940874</ArticleId>
<ArticleId IdType="pmc">PMC4062474</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000620 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000620 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24940874
   |texte=   Neural extrapolation of motion for a ball rolling down an inclined plane.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24940874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024