Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterisation and modelling of brain tissue for surgical simulation.

Identifieur interne : 000415 ( PubMed/Corpus ); précédent : 000414; suivant : 000416

Characterisation and modelling of brain tissue for surgical simulation.

Auteurs : A. Mendizabal ; I. Aguinaga ; E. Sánchez

Source :

RBID : pubmed:25676499

English descriptors

Abstract

Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data.

DOI: 10.1016/j.jmbbm.2015.01.016
PubMed: 25676499

Links to Exploration step

pubmed:25676499

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterisation and modelling of brain tissue for surgical simulation.</title>
<author>
<name sortKey="Mendizabal, A" sort="Mendizabal, A" uniqKey="Mendizabal A" first="A" last="Mendizabal">A. Mendizabal</name>
<affiliation>
<nlm:affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: amendizabal@ceit.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aguinaga, I" sort="Aguinaga, I" uniqKey="Aguinaga I" first="I" last="Aguinaga">I. Aguinaga</name>
<affiliation>
<nlm:affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: iaguinaga@ceit.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, E" sort="Sanchez, E" uniqKey="Sanchez E" first="E" last="Sánchez">E. Sánchez</name>
<affiliation>
<nlm:affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: esanchez@ceit.es.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1016/j.jmbbm.2015.01.016</idno>
<idno type="RBID">pubmed:25676499</idno>
<idno type="pmid">25676499</idno>
<idno type="wicri:Area/PubMed/Corpus">000415</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterisation and modelling of brain tissue for surgical simulation.</title>
<author>
<name sortKey="Mendizabal, A" sort="Mendizabal, A" uniqKey="Mendizabal A" first="A" last="Mendizabal">A. Mendizabal</name>
<affiliation>
<nlm:affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: amendizabal@ceit.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aguinaga, I" sort="Aguinaga, I" uniqKey="Aguinaga I" first="I" last="Aguinaga">I. Aguinaga</name>
<affiliation>
<nlm:affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: iaguinaga@ceit.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, E" sort="Sanchez, E" uniqKey="Sanchez E" first="E" last="Sánchez">E. Sánchez</name>
<affiliation>
<nlm:affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: esanchez@ceit.es.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the mechanical behavior of biomedical materials</title>
<idno type="eISSN">1878-0180</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Brain (cytology)</term>
<term>Brain (surgery)</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Materials Testing</term>
<term>Mechanical Processes</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Materials Testing</term>
<term>Mechanical Processes</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
<term>Viscosity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25676499</PMID>
<DateCreated>
<Year>2015</Year>
<Month>03</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>29</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-0180</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>45</Volume>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the mechanical behavior of biomedical materials</Title>
<ISOAbbreviation>J Mech Behav Biomed Mater</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterisation and modelling of brain tissue for surgical simulation.</ArticleTitle>
<Pagination>
<MedlinePgn>1-10</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmbbm.2015.01.016</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1751-6161(15)00025-9</ELocationID>
<Abstract>
<AbstractText>Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data.</AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mendizabal</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: amendizabal@ceit.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aguinaga</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: iaguinaga@ceit.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sánchez</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Mechanics, CEIT, Donostia-San Sebastián, 20018, Spain. Electronic address: esanchez@ceit.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Mech Behav Biomed Mater</MedlineTA>
<NlmUniqueID>101322406</NlmUniqueID>
<ISSNLinking>1878-0180</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000166">cytology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020342">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016014">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008422">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D055596">Mechanical Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013552">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014783">Viscosity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>1</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>1</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1751-6161(15)00025-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmbbm.2015.01.016</ArticleId>
<ArticleId IdType="pubmed">25676499</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000415 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000415 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25676499
   |texte=   Characterisation and modelling of brain tissue for surgical simulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25676499" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024