Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cerebrospinal fluid reconstitution via a perfusion-based cadaveric model: feasibility study demonstrating surgical simulation of neuroendoscopic procedures.

Identifieur interne : 000376 ( PubMed/Corpus ); précédent : 000375; suivant : 000377

Cerebrospinal fluid reconstitution via a perfusion-based cadaveric model: feasibility study demonstrating surgical simulation of neuroendoscopic procedures.

Auteurs : Jesse L. Winer ; Daniel R. Kramer ; Richard A. Robison ; Ifije Ohiorhenuan ; Michael Minneti ; Steven Giannotta ; Gabriel Zada

Source :

RBID : pubmed:25859805

English descriptors

Abstract

Cadaveric surgical simulation carries the advantage of realistic anatomy and haptic feedback but has been historically difficult to model for intraventricular approaches given the need for active flow of CSF. This feasibility study was designed to simulate intraventricular neuroendoscopic approaches and techniques by reconstituting natural CSF flow in a cadaveric model. In 10 fresh human cadavers, a simple cervical laminectomy and dural opening were made, and a 12-gauge arterial catheter was introduced. Saline was continuously perfused at physiological CSF pressures to reconstitute the subarachnoid space and ventricles. A neuroendoscope was subsequently inserted via a standard right frontal bur hole. In 8 of the 10 cadavers, adequate reconstitution and endoscopic access of the lateral and third ventricles were achieved. In 2 cadavers, ventricular access was not feasible, perhaps because of a small ventricle size and/or deteriorated tissue quality. In all 8 cadavers with successful CSF flow reconstitution and endoscopic access, identifying the foramen of Monro was possible, as was performing septum pellucidotomy and endoscopic third ventriculostomy. Furthermore, navigation of the cerebral aqueduct, fourth ventricle, prepontine cistern, and suprasellar cistern via the lamina terminalis was possible, providing a complementary educational paradigm for resident education that cannot typically be performed in live surgery. Surgical simulation plays a critical and increasingly prominent role in surgical education, particularly for techniques with steep learning curves including intraventricular neuroendoscopic procedures. This novel model provides feasible and realistic surgical simulation of neuroendoscopic intraventricular procedures and approaches.

DOI: 10.3171/2014.10.JNS1497
PubMed: 25859805

Links to Exploration step

pubmed:25859805

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cerebrospinal fluid reconstitution via a perfusion-based cadaveric model: feasibility study demonstrating surgical simulation of neuroendoscopic procedures.</title>
<author>
<name sortKey="Winer, Jesse L" sort="Winer, Jesse L" uniqKey="Winer J" first="Jesse L" last="Winer">Jesse L. Winer</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kramer, Daniel R" sort="Kramer, Daniel R" uniqKey="Kramer D" first="Daniel R" last="Kramer">Daniel R. Kramer</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robison, Richard A" sort="Robison, Richard A" uniqKey="Robison R" first="Richard A" last="Robison">Richard A. Robison</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ohiorhenuan, Ifije" sort="Ohiorhenuan, Ifije" uniqKey="Ohiorhenuan I" first="Ifije" last="Ohiorhenuan">Ifije Ohiorhenuan</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Minneti, Michael" sort="Minneti, Michael" uniqKey="Minneti M" first="Michael" last="Minneti">Michael Minneti</name>
<affiliation>
<nlm:affiliation>General Surgery, University of Southern California, Los Angeles, California.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giannotta, Steven" sort="Giannotta, Steven" uniqKey="Giannotta S" first="Steven" last="Giannotta">Steven Giannotta</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zada, Gabriel" sort="Zada, Gabriel" uniqKey="Zada G" first="Gabriel" last="Zada">Gabriel Zada</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25859805</idno>
<idno type="pmid">25859805</idno>
<idno type="doi">10.3171/2014.10.JNS1497</idno>
<idno type="wicri:Area/PubMed/Corpus">000376</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cerebrospinal fluid reconstitution via a perfusion-based cadaveric model: feasibility study demonstrating surgical simulation of neuroendoscopic procedures.</title>
<author>
<name sortKey="Winer, Jesse L" sort="Winer, Jesse L" uniqKey="Winer J" first="Jesse L" last="Winer">Jesse L. Winer</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kramer, Daniel R" sort="Kramer, Daniel R" uniqKey="Kramer D" first="Daniel R" last="Kramer">Daniel R. Kramer</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robison, Richard A" sort="Robison, Richard A" uniqKey="Robison R" first="Richard A" last="Robison">Richard A. Robison</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ohiorhenuan, Ifije" sort="Ohiorhenuan, Ifije" uniqKey="Ohiorhenuan I" first="Ifije" last="Ohiorhenuan">Ifije Ohiorhenuan</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Minneti, Michael" sort="Minneti, Michael" uniqKey="Minneti M" first="Michael" last="Minneti">Michael Minneti</name>
<affiliation>
<nlm:affiliation>General Surgery, University of Southern California, Los Angeles, California.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giannotta, Steven" sort="Giannotta, Steven" uniqKey="Giannotta S" first="Steven" last="Giannotta">Steven Giannotta</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zada, Gabriel" sort="Zada, Gabriel" uniqKey="Zada G" first="Gabriel" last="Zada">Gabriel Zada</name>
<affiliation>
<nlm:affiliation>Departments of 1 Neurosurgery and.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurosurgery</title>
<idno type="eISSN">1933-0693</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadaver</term>
<term>Cerebral Ventricles (anatomy & histology)</term>
<term>Cerebral Ventricles (surgery)</term>
<term>Cerebrospinal Fluid (chemistry)</term>
<term>Clinical Competence</term>
<term>Dura Mater (anatomy & histology)</term>
<term>Dura Mater (surgery)</term>
<term>Feasibility Studies</term>
<term>Humans</term>
<term>Hypothalamus (anatomy & histology)</term>
<term>Hypothalamus (surgery)</term>
<term>Laminectomy</term>
<term>Learning Curve</term>
<term>Neuroendoscopy (education)</term>
<term>Neuroendoscopy (methods)</term>
<term>Neuronavigation (education)</term>
<term>Neuronavigation (methods)</term>
<term>Neurosurgical Procedures (education)</term>
<term>Neurosurgical Procedures (methods)</term>
<term>Septum Pellucidum (anatomy & histology)</term>
<term>Septum Pellucidum (surgery)</term>
<term>Ventriculostomy (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Cerebral Ventricles</term>
<term>Dura Mater</term>
<term>Hypothalamus</term>
<term>Septum Pellucidum</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cerebrospinal Fluid</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>Neuroendoscopy</term>
<term>Neuronavigation</term>
<term>Neurosurgical Procedures</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Neuroendoscopy</term>
<term>Neuronavigation</term>
<term>Neurosurgical Procedures</term>
<term>Ventriculostomy</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Cerebral Ventricles</term>
<term>Dura Mater</term>
<term>Hypothalamus</term>
<term>Septum Pellucidum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cadaver</term>
<term>Clinical Competence</term>
<term>Feasibility Studies</term>
<term>Humans</term>
<term>Laminectomy</term>
<term>Learning Curve</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cadaveric surgical simulation carries the advantage of realistic anatomy and haptic feedback but has been historically difficult to model for intraventricular approaches given the need for active flow of CSF. This feasibility study was designed to simulate intraventricular neuroendoscopic approaches and techniques by reconstituting natural CSF flow in a cadaveric model. In 10 fresh human cadavers, a simple cervical laminectomy and dural opening were made, and a 12-gauge arterial catheter was introduced. Saline was continuously perfused at physiological CSF pressures to reconstitute the subarachnoid space and ventricles. A neuroendoscope was subsequently inserted via a standard right frontal bur hole. In 8 of the 10 cadavers, adequate reconstitution and endoscopic access of the lateral and third ventricles were achieved. In 2 cadavers, ventricular access was not feasible, perhaps because of a small ventricle size and/or deteriorated tissue quality. In all 8 cadavers with successful CSF flow reconstitution and endoscopic access, identifying the foramen of Monro was possible, as was performing septum pellucidotomy and endoscopic third ventriculostomy. Furthermore, navigation of the cerebral aqueduct, fourth ventricle, prepontine cistern, and suprasellar cistern via the lamina terminalis was possible, providing a complementary educational paradigm for resident education that cannot typically be performed in live surgery. Surgical simulation plays a critical and increasingly prominent role in surgical education, particularly for techniques with steep learning curves including intraventricular neuroendoscopic procedures. This novel model provides feasible and realistic surgical simulation of neuroendoscopic intraventricular procedures and approaches.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25859805</PMID>
<DateCreated>
<Year>2016</Year>
<Month>02</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1933-0693</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>123</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurosurgery</Title>
<ISOAbbreviation>J. Neurosurg.</ISOAbbreviation>
</Journal>
<ArticleTitle>Cerebrospinal fluid reconstitution via a perfusion-based cadaveric model: feasibility study demonstrating surgical simulation of neuroendoscopic procedures.</ArticleTitle>
<Pagination>
<MedlinePgn>1316-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3171/2014.10.JNS1497</ELocationID>
<Abstract>
<AbstractText>Cadaveric surgical simulation carries the advantage of realistic anatomy and haptic feedback but has been historically difficult to model for intraventricular approaches given the need for active flow of CSF. This feasibility study was designed to simulate intraventricular neuroendoscopic approaches and techniques by reconstituting natural CSF flow in a cadaveric model. In 10 fresh human cadavers, a simple cervical laminectomy and dural opening were made, and a 12-gauge arterial catheter was introduced. Saline was continuously perfused at physiological CSF pressures to reconstitute the subarachnoid space and ventricles. A neuroendoscope was subsequently inserted via a standard right frontal bur hole. In 8 of the 10 cadavers, adequate reconstitution and endoscopic access of the lateral and third ventricles were achieved. In 2 cadavers, ventricular access was not feasible, perhaps because of a small ventricle size and/or deteriorated tissue quality. In all 8 cadavers with successful CSF flow reconstitution and endoscopic access, identifying the foramen of Monro was possible, as was performing septum pellucidotomy and endoscopic third ventriculostomy. Furthermore, navigation of the cerebral aqueduct, fourth ventricle, prepontine cistern, and suprasellar cistern via the lamina terminalis was possible, providing a complementary educational paradigm for resident education that cannot typically be performed in live surgery. Surgical simulation plays a critical and increasingly prominent role in surgical education, particularly for techniques with steep learning curves including intraventricular neuroendoscopic procedures. This novel model provides feasible and realistic surgical simulation of neuroendoscopic intraventricular procedures and approaches.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Winer</LastName>
<ForeName>Jesse L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Neurosurgery and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kramer</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Neurosurgery and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Robison</LastName>
<ForeName>Richard A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Neurosurgery and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohiorhenuan</LastName>
<ForeName>Ifije</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Neurosurgery and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minneti</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>General Surgery, University of Southern California, Los Angeles, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giannotta</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Neurosurgery and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zada</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Neurosurgery and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosurg</MedlineTA>
<NlmUniqueID>0253357</NlmUniqueID>
<ISSNLinking>0022-3085</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002102">Cadaver</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002552">Cerebral Ventricles</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002555">Cerebrospinal Fluid</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002983">Clinical Competence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004388">Dura Mater</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005240">Feasibility Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007031">Hypothalamus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007796">Laminectomy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D059032">Learning Curve</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D044583">Neuroendoscopy</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000193">education</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D038361">Neuronavigation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000193">education</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019635">Neurosurgical Procedures</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000193">education</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012688">Septum Pellucidum</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014696">Ventriculostomy</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ETV = endoscopic third ventriculostomy</Keyword>
<Keyword MajorTopicYN="N">FTDL = Fresh Tissue Dissection Laboratory</Keyword>
<Keyword MajorTopicYN="N">USC = University of Southern California</Keyword>
<Keyword MajorTopicYN="N">cadaver</Keyword>
<Keyword MajorTopicYN="N">cerebrospinal fluid</Keyword>
<Keyword MajorTopicYN="N">endoscopy</Keyword>
<Keyword MajorTopicYN="N">simulation</Keyword>
<Keyword MajorTopicYN="N">surgical technique</Keyword>
<Keyword MajorTopicYN="N">surgical training</Keyword>
<Keyword MajorTopicYN="N">third ventriculostomy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>4</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25859805</ArticleId>
<ArticleId IdType="doi">10.3171/2014.10.JNS1497</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000376 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000376 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25859805
   |texte=   Cerebrospinal fluid reconstitution via a perfusion-based cadaveric model: feasibility study demonstrating surgical simulation of neuroendoscopic procedures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25859805" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024