Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NeuroControl of movement: system identification approach for clinical benefit.

Identifieur interne : 000232 ( PubMed/Corpus ); précédent : 000231; suivant : 000233

NeuroControl of movement: system identification approach for clinical benefit.

Auteurs : Carel G M. Meskers ; Jurriaan H. De Groot ; Erwin De Vlugt ; Alfred C. Schouten

Source :

RBID : pubmed:26441563

Abstract

Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy (CP), dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for: (1) the interaction between the neural controller and the "plant", comprising the biomechanical properties of the musculaskeletal system including the viscoelastic properties of the contractile (muscle) and non-contractile (connective) tissues: neuromechanics; and (2) the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop) system identification (SI), and neuro-mechanical modeling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and for biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.

DOI: 10.3389/fnint.2015.00048
PubMed: 26441563

Links to Exploration step

pubmed:26441563

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">NeuroControl of movement: system identification approach for clinical benefit.</title>
<author>
<name sortKey="Meskers, Carel G M" sort="Meskers, Carel G M" uniqKey="Meskers C" first="Carel G M" last="Meskers">Carel G M. Meskers</name>
<affiliation>
<nlm:affiliation>Department of Rehabilitation Medicine, VU University Medical Center Amsterdam, Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Groot, Jurriaan H" sort="De Groot, Jurriaan H" uniqKey="De Groot J" first="Jurriaan H" last="De Groot">Jurriaan H. De Groot</name>
<affiliation>
<nlm:affiliation>Department of Rehabilitation Medicine, Leiden University Medical Center Leiden, Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Vlugt, Erwin" sort="De Vlugt, Erwin" uniqKey="De Vlugt E" first="Erwin" last="De Vlugt">Erwin De Vlugt</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schouten, Alfred C" sort="Schouten, Alfred C" uniqKey="Schouten A" first="Alfred C" last="Schouten">Alfred C. Schouten</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands ; Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente Enschede, Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.3389/fnint.2015.00048</idno>
<idno type="RBID">pubmed:26441563</idno>
<idno type="pmid">26441563</idno>
<idno type="wicri:Area/PubMed/Corpus">000232</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">NeuroControl of movement: system identification approach for clinical benefit.</title>
<author>
<name sortKey="Meskers, Carel G M" sort="Meskers, Carel G M" uniqKey="Meskers C" first="Carel G M" last="Meskers">Carel G M. Meskers</name>
<affiliation>
<nlm:affiliation>Department of Rehabilitation Medicine, VU University Medical Center Amsterdam, Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Groot, Jurriaan H" sort="De Groot, Jurriaan H" uniqKey="De Groot J" first="Jurriaan H" last="De Groot">Jurriaan H. De Groot</name>
<affiliation>
<nlm:affiliation>Department of Rehabilitation Medicine, Leiden University Medical Center Leiden, Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Vlugt, Erwin" sort="De Vlugt, Erwin" uniqKey="De Vlugt E" first="Erwin" last="De Vlugt">Erwin De Vlugt</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schouten, Alfred C" sort="Schouten, Alfred C" uniqKey="Schouten A" first="Alfred C" last="Schouten">Alfred C. Schouten</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands ; Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente Enschede, Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in integrative neuroscience</title>
<idno type="eISSN">1662-5145</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy (CP), dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for: (1) the interaction between the neural controller and the "plant", comprising the biomechanical properties of the musculaskeletal system including the viscoelastic properties of the contractile (muscle) and non-contractile (connective) tissues: neuromechanics; and (2) the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop) system identification (SI), and neuro-mechanical modeling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and for biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">26441563</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1662-5145</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in integrative neuroscience</Title>
<ISOAbbreviation>Front Integr Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>NeuroControl of movement: system identification approach for clinical benefit.</ArticleTitle>
<Pagination>
<MedlinePgn>48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnint.2015.00048</ELocationID>
<Abstract>
<AbstractText>Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy (CP), dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for: (1) the interaction between the neural controller and the "plant", comprising the biomechanical properties of the musculaskeletal system including the viscoelastic properties of the contractile (muscle) and non-contractile (connective) tissues: neuromechanics; and (2) the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop) system identification (SI), and neuro-mechanical modeling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and for biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meskers</LastName>
<ForeName>Carel G M</ForeName>
<Initials>CG</Initials>
<AffiliationInfo>
<Affiliation>Department of Rehabilitation Medicine, VU University Medical Center Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Groot</LastName>
<ForeName>Jurriaan H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Rehabilitation Medicine, Leiden University Medical Center Leiden, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Vlugt</LastName>
<ForeName>Erwin</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schouten</LastName>
<ForeName>Alfred C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands ; Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente Enschede, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Integr Neurosci</MedlineTA>
<NlmUniqueID>101477950</NlmUniqueID>
<ISSNLinking>1662-5145</ISSNLinking>
</MedlineJournalInfo>
<OtherID Source="NLM">PMC4561669</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">afferent feedback modulation</Keyword>
<Keyword MajorTopicYN="N">ageing</Keyword>
<Keyword MajorTopicYN="N">movement disorders</Keyword>
<Keyword MajorTopicYN="N">neuromechanics</Keyword>
<Keyword MajorTopicYN="N">stroke</Keyword>
<Keyword MajorTopicYN="N">system identification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2015</Year>
<Month></Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>9</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>8</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2015</Year>
<Month>9</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fnint.2015.00048</ArticleId>
<ArticleId IdType="pubmed">26441563</ArticleId>
<ArticleId IdType="pmc">PMC4561669</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26441563
   |texte=   NeuroControl of movement: system identification approach for clinical benefit.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26441563" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024