Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

Identifieur interne : 000190 ( PubMed/Corpus ); précédent : 000189; suivant : 000191

Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

Auteurs : Moslem Sadeghi-Goughari ; Afsaneh Mojra

Source :

RBID : pubmed:26590456

Abstract

Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors.

DOI: 10.1016/j.jtherbio.2015.08.011
PubMed: 26590456

Links to Exploration step

pubmed:26590456

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.</title>
<author>
<name sortKey="Sadeghi Goughari, Moslem" sort="Sadeghi Goughari, Moslem" uniqKey="Sadeghi Goughari M" first="Moslem" last="Sadeghi-Goughari">Moslem Sadeghi-Goughari</name>
<affiliation>
<nlm:affiliation>Faculty of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box 19395-1999, Tehran, Iran. Electronic address: ms.sadeghi@mail.kntu.ac.ir.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mojra, Afsaneh" sort="Mojra, Afsaneh" uniqKey="Mojra A" first="Afsaneh" last="Mojra">Afsaneh Mojra</name>
<affiliation>
<nlm:affiliation>Faculty of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box 19395-1999, Tehran, Iran. Electronic address: Mojra@kntu.ac.ir.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1016/j.jtherbio.2015.08.011</idno>
<idno type="RBID">pubmed:26590456</idno>
<idno type="pmid">26590456</idno>
<idno type="wicri:Area/PubMed/Corpus">000190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.</title>
<author>
<name sortKey="Sadeghi Goughari, Moslem" sort="Sadeghi Goughari, Moslem" uniqKey="Sadeghi Goughari M" first="Moslem" last="Sadeghi-Goughari">Moslem Sadeghi-Goughari</name>
<affiliation>
<nlm:affiliation>Faculty of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box 19395-1999, Tehran, Iran. Electronic address: ms.sadeghi@mail.kntu.ac.ir.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mojra, Afsaneh" sort="Mojra, Afsaneh" uniqKey="Mojra A" first="Afsaneh" last="Mojra">Afsaneh Mojra</name>
<affiliation>
<nlm:affiliation>Faculty of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box 19395-1999, Tehran, Iran. Electronic address: Mojra@kntu.ac.ir.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of thermal biology</title>
<idno type="ISSN">0306-4565</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">26590456</PMID>
<DateCreated>
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0306-4565</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>53</Volume>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of thermal biology</Title>
<ISOAbbreviation>J. Therm. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.</ArticleTitle>
<Pagination>
<MedlinePgn>53-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtherbio.2015.08.011</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0306-4565(15)30099-1</ELocationID>
<Abstract>
<AbstractText>Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors.</AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sadeghi-Goughari</LastName>
<ForeName>Moslem</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box 19395-1999, Tehran, Iran. Electronic address: ms.sadeghi@mail.kntu.ac.ir.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mojra</LastName>
<ForeName>Afsaneh</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box 19395-1999, Tehran, Iran. Electronic address: Mojra@kntu.ac.ir.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Therm Biol</MedlineTA>
<NlmUniqueID>7600115</NlmUniqueID>
<ISSNLinking>0306-4565</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Artificial tactile sensing</Keyword>
<Keyword MajorTopicYN="N">Brain tumor</Keyword>
<Keyword MajorTopicYN="N">Finite element method</Keyword>
<Keyword MajorTopicYN="N">Thermo-hyper-viscoelastic analysis</Keyword>
<Keyword MajorTopicYN="N">Thermography</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>4</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>7</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>8</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>8</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0306-4565(15)30099-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.jtherbio.2015.08.011</ArticleId>
<ArticleId IdType="pubmed">26590456</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000190 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000190 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26590456
   |texte=   Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26590456" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024