Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

Identifieur interne : 000057 ( PubMed/Corpus ); précédent : 000056; suivant : 000058

Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

Auteurs : Ali Farshchiansadegh ; Alejandro Melendez-Calderon ; Rajiv Ranganathan ; Todd D. Murphey ; Ferdinando A. Mussa-Ivaldi

Source :

RBID : pubmed:27035587

Abstract

The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

DOI: 10.1371/journal.pcbi.1004861
PubMed: 27035587

Links to Exploration step

pubmed:27035587

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.</title>
<author>
<name sortKey="Farshchiansadegh, Ali" sort="Farshchiansadegh, Ali" uniqKey="Farshchiansadegh A" first="Ali" last="Farshchiansadegh">Ali Farshchiansadegh</name>
<affiliation>
<nlm:affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Melendez Calderon, Alejandro" sort="Melendez Calderon, Alejandro" uniqKey="Melendez Calderon A" first="Alejandro" last="Melendez-Calderon">Alejandro Melendez-Calderon</name>
<affiliation>
<nlm:affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ranganathan, Rajiv" sort="Ranganathan, Rajiv" uniqKey="Ranganathan R" first="Rajiv" last="Ranganathan">Rajiv Ranganathan</name>
<affiliation>
<nlm:affiliation>Department of Kinesiology, Michigan State University, East Lansing, Michigan, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphey, Todd D" sort="Murphey, Todd D" uniqKey="Murphey T" first="Todd D" last="Murphey">Todd D. Murphey</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mussa Ivaldi, Ferdinando A" sort="Mussa Ivaldi, Ferdinando A" uniqKey="Mussa Ivaldi F" first="Ferdinando A" last="Mussa-Ivaldi">Ferdinando A. Mussa-Ivaldi</name>
<affiliation>
<nlm:affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="doi">10.1371/journal.pcbi.1004861</idno>
<idno type="RBID">pubmed:27035587</idno>
<idno type="pmid">27035587</idno>
<idno type="wicri:Area/PubMed/Corpus">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.</title>
<author>
<name sortKey="Farshchiansadegh, Ali" sort="Farshchiansadegh, Ali" uniqKey="Farshchiansadegh A" first="Ali" last="Farshchiansadegh">Ali Farshchiansadegh</name>
<affiliation>
<nlm:affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Melendez Calderon, Alejandro" sort="Melendez Calderon, Alejandro" uniqKey="Melendez Calderon A" first="Alejandro" last="Melendez-Calderon">Alejandro Melendez-Calderon</name>
<affiliation>
<nlm:affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ranganathan, Rajiv" sort="Ranganathan, Rajiv" uniqKey="Ranganathan R" first="Rajiv" last="Ranganathan">Rajiv Ranganathan</name>
<affiliation>
<nlm:affiliation>Department of Kinesiology, Michigan State University, East Lansing, Michigan, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphey, Todd D" sort="Murphey, Todd D" uniqKey="Murphey T" first="Todd D" last="Murphey">Todd D. Murphey</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mussa Ivaldi, Ferdinando A" sort="Mussa Ivaldi, Ferdinando A" uniqKey="Mussa Ivaldi F" first="Ferdinando A" last="Mussa-Ivaldi">Ferdinando A. Mussa-Ivaldi</name>
<affiliation>
<nlm:affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Data-Review">
<PMID Version="1">27035587</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>02</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>04</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004861</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1004861</ELocationID>
<Abstract>
<AbstractText>The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Farshchiansadegh</LastName>
<ForeName>Ali</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Melendez-Calderon</LastName>
<ForeName>Alejandro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ranganathan</LastName>
<ForeName>Rajiv</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Kinesiology, Michigan State University, East Lansing, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murphey</LastName>
<ForeName>Todd D</ForeName>
<Initials>TD</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mussa-Ivaldi</LastName>
<ForeName>Ferdinando A</ForeName>
<Initials>FA</Initials>
<AffiliationInfo>
<Affiliation>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Physiology, Northwestern University, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Dec;104(6):2985-94</RefSource>
<PMID Version="1">20884757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Oct;102(4):2112-20</RefSource>
<PMID Version="1">19657075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Jul 18;32(29):9859-69</RefSource>
<PMID Version="1">22815501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2013 Jul;110(1):1-11</RefSource>
<PMID Version="1">23554437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 Oct 15;112(8):1815-24</RefSource>
<PMID Version="1">24944215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2015 Sep 21;25(18):2452-6</RefSource>
<PMID Version="1">26365256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2002 Nov;5(11):1226-35</RefSource>
<PMID Version="1">12404008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1981;42(2):223-7</RefSource>
<PMID Version="1">7262217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1982 Jun;105(Pt 2):331-48</RefSource>
<PMID Version="1">7082993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1981 Jul;1(7):710-20</RefSource>
<PMID Version="1">7346580</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1985 Jul;5(7):1688-703</RefSource>
<PMID Version="1">4020415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 1989;61(2):89-101</RefSource>
<PMID Version="1">2742921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 May;14(5 Pt 2):3208-24</RefSource>
<PMID Version="1">8182467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;103(3):421-8</RefSource>
<PMID Version="1">7789448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;103(3):460-70</RefSource>
<PMID Version="1">7789452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1995 Sep;15(9):6271-80</RefSource>
<PMID Version="1">7666209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Nov;74(5):2174-8</RefSource>
<PMID Version="1">8592205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Aug 20;394(6695):780-4</RefSource>
<PMID Version="1">9723616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1998 Sep;122(2):157-64</RefSource>
<PMID Version="1">9776514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Nov 28;27(48):13045-64</RefSource>
<PMID Version="1">18045899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 May 20;18(10):763-8</RefSource>
<PMID Version="1">18485709</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 Sep;100(3):1455-64</RefSource>
<PMID Version="1">18596187</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Feb 8;32(6):2182-90</RefSource>
<PMID Version="1">22323730</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4818082</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2016</Year>
<Month>4</Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>8</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2016</Year>
<Month>4</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pcbi.1004861</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-15-01425</ArticleId>
<ArticleId IdType="pubmed">27035587</ArticleId>
<ArticleId IdType="pmc">PMC4818082</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27035587
   |texte=   Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27035587" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024