Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Development of Visual Areas Depends Differently on Visual Experience

Identifieur interne : 002240 ( Pmc/Curation ); précédent : 002239; suivant : 002241

The Development of Visual Areas Depends Differently on Visual Experience

Auteurs : Wen Qin [République populaire de Chine] ; Yong Liu [République populaire de Chine] ; Tianzi Jiang [République populaire de Chine] ; Chunshui Yu [République populaire de Chine]

Source :

RBID : PMC:3538632

Abstract

Visual experience plays an important role in the development of the visual cortex; however, recent functional imaging studies have shown that the functional organization is preserved in several higher-tier visual areas in congenitally blind subjects, indicating that maturation of visual areas depend unequally on visual experience. In this study, we aim to validate this hypothesis using a multimodality MRI approach. We found increased cortical thickness in the congenitally blind was present in the early visual areas and absent in the higher-tier ones, suggesting that the structural development of the visual cortex depends hierarchically on visual experience. In congenitally blind subjects, the decreased resting-state functional connectivity with the primary somatosensory cortex was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral stream than in the dorsal one, suggesting that the development of functional organization of the visual cortex also depends differently on visual experience. Moreover, congenitally blind subjects showed normal or increased functional connectivity between ipsilateral higher-tier and early visual areas, suggesting an indirect corticocortical pathway through which somatosenroy information can reach the early visual areas. These findings support our hypothesis that the development of visual areas depends differently on visual experience.


Url:
DOI: 10.1371/journal.pone.0053784
PubMed: 23308283
PubMed Central: 3538632

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3538632

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Development of Visual Areas Depends Differently on Visual Experience</title>
<author>
<name sortKey="Qin, Wen" sort="Qin, Wen" uniqKey="Qin W" first="Wen" last="Qin">Wen Qin</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Radiology, Tianjin Medical University General Hospital, Tianjin</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yong" sort="Liu, Yong" uniqKey="Liu Y" first="Yong" last="Liu">Yong Liu</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tianzi" sort="Jiang, Tianzi" uniqKey="Jiang T" first="Tianzi" last="Jiang">Tianzi Jiang</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Chunshui" sort="Yu, Chunshui" uniqKey="Yu C" first="Chunshui" last="Yu">Chunshui Yu</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Radiology, Tianjin Medical University General Hospital, Tianjin</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">
<addr-line>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23308283</idno>
<idno type="pmc">3538632</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538632</idno>
<idno type="RBID">PMC:3538632</idno>
<idno type="doi">10.1371/journal.pone.0053784</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002240</idno>
<idno type="wicri:Area/Pmc/Curation">002240</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Development of Visual Areas Depends Differently on Visual Experience</title>
<author>
<name sortKey="Qin, Wen" sort="Qin, Wen" uniqKey="Qin W" first="Wen" last="Qin">Wen Qin</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Radiology, Tianjin Medical University General Hospital, Tianjin</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yong" sort="Liu, Yong" uniqKey="Liu Y" first="Yong" last="Liu">Yong Liu</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tianzi" sort="Jiang, Tianzi" uniqKey="Jiang T" first="Tianzi" last="Jiang">Tianzi Jiang</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Chunshui" sort="Yu, Chunshui" uniqKey="Yu C" first="Chunshui" last="Yu">Chunshui Yu</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Radiology, Tianjin Medical University General Hospital, Tianjin</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">
<addr-line>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Visual experience plays an important role in the development of the visual cortex; however, recent functional imaging studies have shown that the functional organization is preserved in several higher-tier visual areas in congenitally blind subjects, indicating that maturation of visual areas depend unequally on visual experience. In this study, we aim to validate this hypothesis using a multimodality MRI approach. We found increased cortical thickness in the congenitally blind was present in the early visual areas and absent in the higher-tier ones, suggesting that the structural development of the visual cortex depends hierarchically on visual experience. In congenitally blind subjects, the decreased resting-state functional connectivity with the primary somatosensory cortex was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral stream than in the dorsal one, suggesting that the development of functional organization of the visual cortex also depends differently on visual experience. Moreover, congenitally blind subjects showed normal or increased functional connectivity between ipsilateral higher-tier and early visual areas, suggesting an indirect corticocortical pathway through which somatosenroy information can reach the early visual areas. These findings support our hypothesis that the development of visual areas depends differently on visual experience.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J Jiang</name>
</author>
<author>
<name sortKey="Zhu, W" uniqKey="Zhu W">W Zhu</name>
</author>
<author>
<name sortKey="Shi, F" uniqKey="Shi F">F Shi</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Hj" uniqKey="Park H">HJ Park</name>
</author>
<author>
<name sortKey="Lee, Jd" uniqKey="Lee J">JD Lee</name>
</author>
<author>
<name sortKey="Kim, Ey" uniqKey="Kim E">EY Kim</name>
</author>
<author>
<name sortKey="Park, B" uniqKey="Park B">B Park</name>
</author>
<author>
<name sortKey="Oh, Mk" uniqKey="Oh M">MK Oh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bridge, H" uniqKey="Bridge H">H Bridge</name>
</author>
<author>
<name sortKey="Cowey, A" uniqKey="Cowey A">A Cowey</name>
</author>
<author>
<name sortKey="Ragge, N" uniqKey="Ragge N">N Ragge</name>
</author>
<author>
<name sortKey="Watkins, K" uniqKey="Watkins K">K Watkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Jiang, T" uniqKey="Jiang T">T Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Volder, Ag" uniqKey="De Volder A">AG De Volder</name>
</author>
<author>
<name sortKey="Bol, A" uniqKey="Bol A">A Bol</name>
</author>
<author>
<name sortKey="Blin, J" uniqKey="Blin J">J Blin</name>
</author>
<author>
<name sortKey="Robert, A" uniqKey="Robert A">A Robert</name>
</author>
<author>
<name sortKey="Arno, P" uniqKey="Arno P">P Arno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishina, M" uniqKey="Mishina M">M Mishina</name>
</author>
<author>
<name sortKey="Senda, M" uniqKey="Senda M">M Senda</name>
</author>
<author>
<name sortKey="Kiyosawa, M" uniqKey="Kiyosawa M">M Kiyosawa</name>
</author>
<author>
<name sortKey="Ishiwata, K" uniqKey="Ishiwata K">K Ishiwata</name>
</author>
<author>
<name sortKey="De Volder, Ag" uniqKey="De Volder A">AG De Volder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veraart, C" uniqKey="Veraart C">C Veraart</name>
</author>
<author>
<name sortKey="De Volder, Ag" uniqKey="De Volder A">AG De Volder</name>
</author>
<author>
<name sortKey="Wanet Defalque, Mc" uniqKey="Wanet Defalque M">MC Wanet-Defalque</name>
</author>
<author>
<name sortKey="Bol, A" uniqKey="Bol A">A Bol</name>
</author>
<author>
<name sortKey="Michel, C" uniqKey="Michel C">C Michel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uhl, F" uniqKey="Uhl F">F Uhl</name>
</author>
<author>
<name sortKey="Franzen, P" uniqKey="Franzen P">P Franzen</name>
</author>
<author>
<name sortKey="Podreka, I" uniqKey="Podreka I">I Podreka</name>
</author>
<author>
<name sortKey="Steiner, M" uniqKey="Steiner M">M Steiner</name>
</author>
<author>
<name sortKey="Deecke, L" uniqKey="Deecke L">L Deecke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
<author>
<name sortKey="Schneider, Fc" uniqKey="Schneider F">FC Schneider</name>
</author>
<author>
<name sortKey="Paulson, Ob" uniqKey="Paulson O">OB Paulson</name>
</author>
<author>
<name sortKey="Kupers, R" uniqKey="Kupers R">R Kupers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noppeney, U" uniqKey="Noppeney U">U Noppeney</name>
</author>
<author>
<name sortKey="Friston, Kj" uniqKey="Friston K">KJ Friston</name>
</author>
<author>
<name sortKey="Ashburner, J" uniqKey="Ashburner J">J Ashburner</name>
</author>
<author>
<name sortKey="Frackowiak, R" uniqKey="Frackowiak R">R Frackowiak</name>
</author>
<author>
<name sortKey="Price, Cj" uniqKey="Price C">CJ Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, Wj" uniqKey="Pan W">WJ Pan</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Li, Cx" uniqKey="Li C">CX Li</name>
</author>
<author>
<name sortKey="Lin, F" uniqKey="Lin F">F Lin</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimony, Js" uniqKey="Shimony J">JS Shimony</name>
</author>
<author>
<name sortKey="Burton, H" uniqKey="Burton H">H Burton</name>
</author>
<author>
<name sortKey="Epstein, Aa" uniqKey="Epstein A">AA Epstein</name>
</author>
<author>
<name sortKey="Mclaren, Dg" uniqKey="Mclaren D">DG McLaren</name>
</author>
<author>
<name sortKey="Sun, Sw" uniqKey="Sun S">SW Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shu, N" uniqKey="Shu N">N Shu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C Yu</name>
</author>
<author>
<name sortKey="Jiang, T" uniqKey="Jiang T">T Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C Yu</name>
</author>
<author>
<name sortKey="Liang, M" uniqKey="Liang M">M Liang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bavelier, D" uniqKey="Bavelier D">D Bavelier</name>
</author>
<author>
<name sortKey="Neville, Hj" uniqKey="Neville H">HJ Neville</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiehler, K" uniqKey="Fiehler K">K Fiehler</name>
</author>
<author>
<name sortKey="Rosler, F" uniqKey="Rosler F">F Rosler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Jacobson, G" uniqKey="Jacobson G">G Jacobson</name>
</author>
<author>
<name sortKey="Hendler, T" uniqKey="Hendler T">T Hendler</name>
</author>
<author>
<name sortKey="Malach, R" uniqKey="Malach R">R Malach</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="James, Tw" uniqKey="James T">TW James</name>
</author>
<author>
<name sortKey="Humphrey, Gk" uniqKey="Humphrey G">GK Humphrey</name>
</author>
<author>
<name sortKey="Gati, Js" uniqKey="Gati J">JS Gati</name>
</author>
<author>
<name sortKey="Servos, P" uniqKey="Servos P">P Servos</name>
</author>
<author>
<name sortKey="Menon, Rs" uniqKey="Menon R">RS Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Jk" uniqKey="Kim J">JK Kim</name>
</author>
<author>
<name sortKey="Zatorre, Rj" uniqKey="Zatorre R">RJ Zatorre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Malach, R" uniqKey="Malach R">R Malach</name>
</author>
<author>
<name sortKey="Hendler, T" uniqKey="Hendler T">T Hendler</name>
</author>
<author>
<name sortKey="Peled, S" uniqKey="Peled S">S Peled</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pietrini, P" uniqKey="Pietrini P">P Pietrini</name>
</author>
<author>
<name sortKey="Furey, Ml" uniqKey="Furey M">ML Furey</name>
</author>
<author>
<name sortKey="Ricciardi, E" uniqKey="Ricciardi E">E Ricciardi</name>
</author>
<author>
<name sortKey="Gobbini, Mi" uniqKey="Gobbini M">MI Gobbini</name>
</author>
<author>
<name sortKey="Wu, Wh" uniqKey="Wu W">WH Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kassuba, T" uniqKey="Kassuba T">T Kassuba</name>
</author>
<author>
<name sortKey="Klinge, C" uniqKey="Klinge C">C Klinge</name>
</author>
<author>
<name sortKey="Holig, C" uniqKey="Holig C">C Holig</name>
</author>
<author>
<name sortKey="Menz, Mm" uniqKey="Menz M">MM Menz</name>
</author>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ricciardi, E" uniqKey="Ricciardi E">E Ricciardi</name>
</author>
<author>
<name sortKey="Vanello, N" uniqKey="Vanello N">N Vanello</name>
</author>
<author>
<name sortKey="Sani, L" uniqKey="Sani L">L Sani</name>
</author>
<author>
<name sortKey="Gentili, C" uniqKey="Gentili C">C Gentili</name>
</author>
<author>
<name sortKey="Scilingo, Ep" uniqKey="Scilingo E">EP Scilingo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poirier, C" uniqKey="Poirier C">C Poirier</name>
</author>
<author>
<name sortKey="Collignon, O" uniqKey="Collignon O">O Collignon</name>
</author>
<author>
<name sortKey="Devolder, Ag" uniqKey="Devolder A">AG Devolder</name>
</author>
<author>
<name sortKey="Renier, L" uniqKey="Renier L">L Renier</name>
</author>
<author>
<name sortKey="Vanlierde, A" uniqKey="Vanlierde A">A Vanlierde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renier, La" uniqKey="Renier L">LA Renier</name>
</author>
<author>
<name sortKey="Anurova, I" uniqKey="Anurova I">I Anurova</name>
</author>
<author>
<name sortKey="De Volder, Ag" uniqKey="De Volder A">AG De Volder</name>
</author>
<author>
<name sortKey="Carlson, S" uniqKey="Carlson S">S Carlson</name>
</author>
<author>
<name sortKey="Vanmeter, J" uniqKey="Vanmeter J">J VanMeter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collignon, O" uniqKey="Collignon O">O Collignon</name>
</author>
<author>
<name sortKey="Vandewalle, G" uniqKey="Vandewalle G">G Vandewalle</name>
</author>
<author>
<name sortKey="Voss, P" uniqKey="Voss P">P Voss</name>
</author>
<author>
<name sortKey="Albouy, G" uniqKey="Albouy G">G Albouy</name>
</author>
<author>
<name sortKey="Charbonneau, G" uniqKey="Charbonneau G">G Charbonneau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiehler, K" uniqKey="Fiehler K">K Fiehler</name>
</author>
<author>
<name sortKey="Burke, M" uniqKey="Burke M">M Burke</name>
</author>
<author>
<name sortKey="Bien, S" uniqKey="Bien S">S Bien</name>
</author>
<author>
<name sortKey="Roder, B" uniqKey="Roder B">B Roder</name>
</author>
<author>
<name sortKey="Rosler, F" uniqKey="Rosler F">F Rosler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reich, L" uniqKey="Reich L">L Reich</name>
</author>
<author>
<name sortKey="Szwed, M" uniqKey="Szwed M">M Szwed</name>
</author>
<author>
<name sortKey="Cohen, L" uniqKey="Cohen L">L Cohen</name>
</author>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Raz, N" uniqKey="Raz N">N Raz</name>
</author>
<author>
<name sortKey="Azulay, H" uniqKey="Azulay H">H Azulay</name>
</author>
<author>
<name sortKey="Malach, R" uniqKey="Malach R">R Malach</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peltier, S" uniqKey="Peltier S">S Peltier</name>
</author>
<author>
<name sortKey="Stilla, R" uniqKey="Stilla R">R Stilla</name>
</author>
<author>
<name sortKey="Mariola, E" uniqKey="Mariola E">E Mariola</name>
</author>
<author>
<name sortKey="Laconte, S" uniqKey="Laconte S">S LaConte</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolbers, T" uniqKey="Wolbers T">T Wolbers</name>
</author>
<author>
<name sortKey="Zahorik, P" uniqKey="Zahorik P">P Zahorik</name>
</author>
<author>
<name sortKey="Giudice, Na" uniqKey="Giudice N">NA Giudice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matteau, I" uniqKey="Matteau I">I Matteau</name>
</author>
<author>
<name sortKey="Kupers, R" uniqKey="Kupers R">R Kupers</name>
</author>
<author>
<name sortKey="Ricciardi, E" uniqKey="Ricciardi E">E Ricciardi</name>
</author>
<author>
<name sortKey="Pietrini, P" uniqKey="Pietrini P">P Pietrini</name>
</author>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
<author>
<name sortKey="Matteau, I" uniqKey="Matteau I">I Matteau</name>
</author>
<author>
<name sortKey="Gjedde, A" uniqKey="Gjedde A">A Gjedde</name>
</author>
<author>
<name sortKey="Kupers, R" uniqKey="Kupers R">R Kupers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poirier, C" uniqKey="Poirier C">C Poirier</name>
</author>
<author>
<name sortKey="Collignon, O" uniqKey="Collignon O">O Collignon</name>
</author>
<author>
<name sortKey="Scheiber, C" uniqKey="Scheiber C">C Scheiber</name>
</author>
<author>
<name sortKey="Renier, L" uniqKey="Renier L">L Renier</name>
</author>
<author>
<name sortKey="Vanlierde, A" uniqKey="Vanlierde A">A Vanlierde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Striem Amit, E" uniqKey="Striem Amit E">E Striem-Amit</name>
</author>
<author>
<name sortKey="Dakwar, O" uniqKey="Dakwar O">O Dakwar</name>
</author>
<author>
<name sortKey="Reich, L" uniqKey="Reich L">L Reich</name>
</author>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Stern, Wm" uniqKey="Stern W">WM Stern</name>
</author>
<author>
<name sortKey="Camprodon, Ja" uniqKey="Camprodon J">JA Camprodon</name>
</author>
<author>
<name sortKey="Bermpohl, F" uniqKey="Bermpohl F">F Bermpohl</name>
</author>
<author>
<name sortKey="Merabet, L" uniqKey="Merabet L">L Merabet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renier, L" uniqKey="Renier L">L Renier</name>
</author>
<author>
<name sortKey="De Volder, Ag" uniqKey="De Volder A">AG De Volder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kupers, R" uniqKey="Kupers R">R Kupers</name>
</author>
<author>
<name sortKey="Chebat, Dr" uniqKey="Chebat D">DR Chebat</name>
</author>
<author>
<name sortKey="Madsen, Kh" uniqKey="Madsen K">KH Madsen</name>
</author>
<author>
<name sortKey="Paulson, Ob" uniqKey="Paulson O">OB Paulson</name>
</author>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auvray, M" uniqKey="Auvray M">M Auvray</name>
</author>
<author>
<name sortKey="Hanneton, S" uniqKey="Hanneton S">S Hanneton</name>
</author>
<author>
<name sortKey="O Regan, Jk" uniqKey="O Regan J">JK O'Regan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proulx, Mj" uniqKey="Proulx M">MJ Proulx</name>
</author>
<author>
<name sortKey="Stoerig, P" uniqKey="Stoerig P">P Stoerig</name>
</author>
<author>
<name sortKey="Ludowig, E" uniqKey="Ludowig E">E Ludowig</name>
</author>
<author>
<name sortKey="Knoll, I" uniqKey="Knoll I">I Knoll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Jk" uniqKey="Kim J">JK Kim</name>
</author>
<author>
<name sortKey="Zatorre, Rj" uniqKey="Zatorre R">RJ Zatorre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kupers, R" uniqKey="Kupers R">R Kupers</name>
</author>
<author>
<name sortKey="Pietrini, P" uniqKey="Pietrini P">P Pietrini</name>
</author>
<author>
<name sortKey="Ricciardi, E" uniqKey="Ricciardi E">E Ricciardi</name>
</author>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reich, L" uniqKey="Reich L">L Reich</name>
</author>
<author>
<name sortKey="Maidenbaum, S" uniqKey="Maidenbaum S">S Maidenbaum</name>
</author>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Driver, J" uniqKey="Driver J">J Driver</name>
</author>
<author>
<name sortKey="Noesselt, T" uniqKey="Noesselt T">T Noesselt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falchier, A" uniqKey="Falchier A">A Falchier</name>
</author>
<author>
<name sortKey="Clavagnier, S" uniqKey="Clavagnier S">S Clavagnier</name>
</author>
<author>
<name sortKey="Barone, P" uniqKey="Barone P">P Barone</name>
</author>
<author>
<name sortKey="Kennedy, H" uniqKey="Kennedy H">H Kennedy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahon, Bz" uniqKey="Mahon B">BZ Mahon</name>
</author>
<author>
<name sortKey="Anzellotti, S" uniqKey="Anzellotti S">S Anzellotti</name>
</author>
<author>
<name sortKey="Schwarzbach, J" uniqKey="Schwarzbach J">J Schwarzbach</name>
</author>
<author>
<name sortKey="Zampini, M" uniqKey="Zampini M">M Zampini</name>
</author>
<author>
<name sortKey="Caramazza, A" uniqKey="Caramazza A">A Caramazza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dale, Am" uniqKey="Dale A">AM Dale</name>
</author>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B Fischl</name>
</author>
<author>
<name sortKey="Sereno, Mi" uniqKey="Sereno M">MI Sereno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B Fischl</name>
</author>
<author>
<name sortKey="Sereno, Mi" uniqKey="Sereno M">MI Sereno</name>
</author>
<author>
<name sortKey="Dale, Am" uniqKey="Dale A">AM Dale</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Segonne, F" uniqKey="Segonne F">F Segonne</name>
</author>
<author>
<name sortKey="Dale, Am" uniqKey="Dale A">AM Dale</name>
</author>
<author>
<name sortKey="Busa, E" uniqKey="Busa E">E Busa</name>
</author>
<author>
<name sortKey="Glessner, M" uniqKey="Glessner M">M Glessner</name>
</author>
<author>
<name sortKey="Salat, D" uniqKey="Salat D">D Salat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B Fischl</name>
</author>
<author>
<name sortKey="Dale, Am" uniqKey="Dale A">AM Dale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B Fischl</name>
</author>
<author>
<name sortKey="Sereno, Mi" uniqKey="Sereno M">MI Sereno</name>
</author>
<author>
<name sortKey="Tootell, Rb" uniqKey="Tootell R">RB Tootell</name>
</author>
<author>
<name sortKey="Dale, Am" uniqKey="Dale A">AM Dale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Essen, Dc" uniqKey="Van Essen D">DC Van Essen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lepore, N" uniqKey="Lepore N">N Lepore</name>
</author>
<author>
<name sortKey="Voss, P" uniqKey="Voss P">P Voss</name>
</author>
<author>
<name sortKey="Lepore, F" uniqKey="Lepore F">F Lepore</name>
</author>
<author>
<name sortKey="Chou, Yy" uniqKey="Chou Y">YY Chou</name>
</author>
<author>
<name sortKey="Fortin, M" uniqKey="Fortin M">M Fortin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chechik, G" uniqKey="Chechik G">G Chechik</name>
</author>
<author>
<name sortKey="Meilijson, I" uniqKey="Meilijson I">I Meilijson</name>
</author>
<author>
<name sortKey="Ruppin, E" uniqKey="Ruppin E">E Ruppin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourgeois, Jp" uniqKey="Bourgeois J">JP Bourgeois</name>
</author>
<author>
<name sortKey="Jastreboff, Pj" uniqKey="Jastreboff P">PJ Jastreboff</name>
</author>
<author>
<name sortKey="Rakic, P" uniqKey="Rakic P">P Rakic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karlen, Sj" uniqKey="Karlen S">SJ Karlen</name>
</author>
<author>
<name sortKey="Kahn, Dm" uniqKey="Kahn D">DM Kahn</name>
</author>
<author>
<name sortKey="Krubitzer, L" uniqKey="Krubitzer L">L Krubitzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kupers, R" uniqKey="Kupers R">R Kupers</name>
</author>
<author>
<name sortKey="Fumal, A" uniqKey="Fumal A">A Fumal</name>
</author>
<author>
<name sortKey="De Noordhout, Am" uniqKey="De Noordhout A">AM de Noordhout</name>
</author>
<author>
<name sortKey="Gjedde, A" uniqKey="Gjedde A">A Gjedde</name>
</author>
<author>
<name sortKey="Schoenen, J" uniqKey="Schoenen J">J Schoenen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rehkamper, G" uniqKey="Rehkamper G">G Rehkamper</name>
</author>
<author>
<name sortKey="Necker, R" uniqKey="Necker R">R Necker</name>
</author>
<author>
<name sortKey="Nevo, E" uniqKey="Nevo E">E Nevo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaway, Em" uniqKey="Callaway E">EM Callaway</name>
</author>
<author>
<name sortKey="Katz, Lc" uniqKey="Katz L">LC Katz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sur, M" uniqKey="Sur M">M Sur</name>
</author>
<author>
<name sortKey="Leamey, Ca" uniqKey="Leamey C">CA Leamey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wittenberg, Gf" uniqKey="Wittenberg G">GF Wittenberg</name>
</author>
<author>
<name sortKey="Werhahn, Kj" uniqKey="Werhahn K">KJ Werhahn</name>
</author>
<author>
<name sortKey="Wassermann, Em" uniqKey="Wassermann E">EM Wassermann</name>
</author>
<author>
<name sortKey="Herscovitch, P" uniqKey="Herscovitch P">P Herscovitch</name>
</author>
<author>
<name sortKey="Cohen, Lg" uniqKey="Cohen L">LG Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klinge, C" uniqKey="Klinge C">C Klinge</name>
</author>
<author>
<name sortKey="Eippert, F" uniqKey="Eippert F">F Eippert</name>
</author>
<author>
<name sortKey="Roder, B" uniqKey="Roder B">B Roder</name>
</author>
<author>
<name sortKey="Buchel, C" uniqKey="Buchel C">C Buchel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C Yu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bedny, M" uniqKey="Bedny M">M Bedny</name>
</author>
<author>
<name sortKey="Pascual Leone, A" uniqKey="Pascual Leone A">A Pascual-Leone</name>
</author>
<author>
<name sortKey="Dodell Feder, D" uniqKey="Dodell Feder D">D Dodell-Feder</name>
</author>
<author>
<name sortKey="Fedorenko, E" uniqKey="Fedorenko E">E Fedorenko</name>
</author>
<author>
<name sortKey="Saxe, R" uniqKey="Saxe R">R Saxe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Bj" uniqKey="He B">BJ He</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Vincent, Jl" uniqKey="Vincent J">JL Vincent</name>
</author>
<author>
<name sortKey="Epstein, A" uniqKey="Epstein A">A Epstein</name>
</author>
<author>
<name sortKey="Shulman, Gl" uniqKey="Shulman G">GL Shulman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norman Haignere, Sv" uniqKey="Norman Haignere S">SV Norman-Haignere</name>
</author>
<author>
<name sortKey="Mccarthy, G" uniqKey="Mccarthy G">G McCarthy</name>
</author>
<author>
<name sortKey="Chun, Mm" uniqKey="Chun M">MM Chun</name>
</author>
<author>
<name sortKey="Turk Browne, Nb" uniqKey="Turk Browne N">NB Turk-Browne</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bedny, M" uniqKey="Bedny M">M Bedny</name>
</author>
<author>
<name sortKey="Konkle, T" uniqKey="Konkle T">T Konkle</name>
</author>
<author>
<name sortKey="Pelphrey, K" uniqKey="Pelphrey K">K Pelphrey</name>
</author>
<author>
<name sortKey="Saxe, R" uniqKey="Saxe R">R Saxe</name>
</author>
<author>
<name sortKey="Pascual Leone, A" uniqKey="Pascual Leone A">A Pascual-Leone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greicius, Md" uniqKey="Greicius M">MD Greicius</name>
</author>
<author>
<name sortKey="Supekar, K" uniqKey="Supekar K">K Supekar</name>
</author>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
<author>
<name sortKey="Dougherty, Rf" uniqKey="Dougherty R">RF Dougherty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honey, Cj" uniqKey="Honey C">CJ Honey</name>
</author>
<author>
<name sortKey="Sporns, O" uniqKey="Sporns O">O Sporns</name>
</author>
<author>
<name sortKey="Cammoun, L" uniqKey="Cammoun L">L Cammoun</name>
</author>
<author>
<name sortKey="Gigandet, X" uniqKey="Gigandet X">X Gigandet</name>
</author>
<author>
<name sortKey="Thiran, Jp" uniqKey="Thiran J">JP Thiran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conturo, Te" uniqKey="Conturo T">TE Conturo</name>
</author>
<author>
<name sortKey="Lori, Nf" uniqKey="Lori N">NF Lori</name>
</author>
<author>
<name sortKey="Cull, Ts" uniqKey="Cull T">TS Cull</name>
</author>
<author>
<name sortKey="Akbudak, E" uniqKey="Akbudak E">E Akbudak</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bizley, Jk" uniqKey="Bizley J">JK Bizley</name>
</author>
<author>
<name sortKey="Nodal, Fr" uniqKey="Nodal F">FR Nodal</name>
</author>
<author>
<name sortKey="Bajo, Vm" uniqKey="Bajo V">VM Bajo</name>
</author>
<author>
<name sortKey="Nelken, I" uniqKey="Nelken I">I Nelken</name>
</author>
<author>
<name sortKey="King, Aj" uniqKey="King A">AJ King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Tl" uniqKey="Lewis T">TL Lewis</name>
</author>
<author>
<name sortKey="Maurer, D" uniqKey="Maurer D">D Maurer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiorpes, L" uniqKey="Kiorpes L">L Kiorpes</name>
</author>
<author>
<name sortKey="Price, T" uniqKey="Price T">T Price</name>
</author>
<author>
<name sortKey="Hall Haro, C" uniqKey="Hall Haro C">C Hall-Haro</name>
</author>
<author>
<name sortKey="Anthony Movshon, J" uniqKey="Anthony Movshon J">J Anthony Movshon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovacs, I" uniqKey="Kovacs I">I Kovacs</name>
</author>
<author>
<name sortKey="Kozma, P" uniqKey="Kozma P">P Kozma</name>
</author>
<author>
<name sortKey="Feher, A" uniqKey="Feher A">A Feher</name>
</author>
<author>
<name sortKey="Benedek, G" uniqKey="Benedek G">G Benedek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovacs, I" uniqKey="Kovacs I">I Kovacs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiorpes, L" uniqKey="Kiorpes L">L Kiorpes</name>
</author>
<author>
<name sortKey="Bassin, Sa" uniqKey="Bassin S">SA Bassin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Distler, C" uniqKey="Distler C">C Distler</name>
</author>
<author>
<name sortKey="Bachevalier, J" uniqKey="Bachevalier J">J Bachevalier</name>
</author>
<author>
<name sortKey="Kennedy, C" uniqKey="Kennedy C">C Kennedy</name>
</author>
<author>
<name sortKey="Mishkin, M" uniqKey="Mishkin M">M Mishkin</name>
</author>
<author>
<name sortKey="Ungerleider, Lg" uniqKey="Ungerleider L">LG Ungerleider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourne, Ja" uniqKey="Bourne J">JA Bourne</name>
</author>
<author>
<name sortKey="Rosa, Mg" uniqKey="Rosa M">MG Rosa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wattam Bell, J" uniqKey="Wattam Bell J">J Wattam-Bell</name>
</author>
<author>
<name sortKey="Birtles, D" uniqKey="Birtles D">D Birtles</name>
</author>
<author>
<name sortKey="Nystrom, P" uniqKey="Nystrom P">P Nystrom</name>
</author>
<author>
<name sortKey="Von Hofsten, C" uniqKey="Von Hofsten C">C von Hofsten</name>
</author>
<author>
<name sortKey="Rosander, K" uniqKey="Rosander K">K Rosander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodman, Hr" uniqKey="Rodman H">HR Rodman</name>
</author>
<author>
<name sortKey="Scalaidhe, Sp" uniqKey="Scalaidhe S">SP Scalaidhe</name>
</author>
<author>
<name sortKey="Gross, Cg" uniqKey="Gross C">CG Gross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bronchti, G" uniqKey="Bronchti G">G Bronchti</name>
</author>
<author>
<name sortKey="Rado, R" uniqKey="Rado R">R Rado</name>
</author>
<author>
<name sortKey="Terkel, J" uniqKey="Terkel J">J Terkel</name>
</author>
<author>
<name sortKey="Wollberg, Z" uniqKey="Wollberg Z">Z Wollberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werner, S" uniqKey="Werner S">S Werner</name>
</author>
<author>
<name sortKey="Noppeney, U" uniqKey="Noppeney U">U Noppeney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Den Ouden, He" uniqKey="Den Ouden H">HE den Ouden</name>
</author>
<author>
<name sortKey="Friston, Kj" uniqKey="Friston K">KJ Friston</name>
</author>
<author>
<name sortKey="Daw, Nd" uniqKey="Daw N">ND Daw</name>
</author>
<author>
<name sortKey="Mcintosh, Ar" uniqKey="Mcintosh A">AR McIntosh</name>
</author>
<author>
<name sortKey="Stephan, Ke" uniqKey="Stephan K">KE Stephan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckert, Ma" uniqKey="Eckert M">MA Eckert</name>
</author>
<author>
<name sortKey="Kamdar, Nv" uniqKey="Kamdar N">NV Kamdar</name>
</author>
<author>
<name sortKey="Chang, Ce" uniqKey="Chang C">CE Chang</name>
</author>
<author>
<name sortKey="Beckmann, Cf" uniqKey="Beckmann C">CF Beckmann</name>
</author>
<author>
<name sortKey="Greicius, Md" uniqKey="Greicius M">MD Greicius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collignon, O" uniqKey="Collignon O">O Collignon</name>
</author>
<author>
<name sortKey="Lassonde, M" uniqKey="Lassonde M">M Lassonde</name>
</author>
<author>
<name sortKey="Lepore, F" uniqKey="Lepore F">F Lepore</name>
</author>
<author>
<name sortKey="Bastien, D" uniqKey="Bastien D">D Bastien</name>
</author>
<author>
<name sortKey="Veraart, C" uniqKey="Veraart C">C Veraart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ptito, M" uniqKey="Ptito M">M Ptito</name>
</author>
<author>
<name sortKey="Fumal, A" uniqKey="Fumal A">A Fumal</name>
</author>
<author>
<name sortKey="De Noordhout, Am" uniqKey="De Noordhout A">AM de Noordhout</name>
</author>
<author>
<name sortKey="Schoenen, J" uniqKey="Schoenen J">J Schoenen</name>
</author>
<author>
<name sortKey="Gjedde, A" uniqKey="Gjedde A">A Gjedde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Innocenti, Gm" uniqKey="Innocenti G">GM Innocenti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rockland, Ks" uniqKey="Rockland K">KS Rockland</name>
</author>
<author>
<name sortKey="Ojima, H" uniqKey="Ojima H">H Ojima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujii, T" uniqKey="Fujii T">T Fujii</name>
</author>
<author>
<name sortKey="Tanabe, Hc" uniqKey="Tanabe H">HC Tanabe</name>
</author>
<author>
<name sortKey="Kochiyama, T" uniqKey="Kochiyama T">T Kochiyama</name>
</author>
<author>
<name sortKey="Sadato, N" uniqKey="Sadato N">N Sadato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Raz, N" uniqKey="Raz N">N Raz</name>
</author>
<author>
<name sortKey="Pianka, P" uniqKey="Pianka P">P Pianka</name>
</author>
<author>
<name sortKey="Malach, R" uniqKey="Malach R">R Malach</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raz, N" uniqKey="Raz N">N Raz</name>
</author>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burton, H" uniqKey="Burton H">H Burton</name>
</author>
<author>
<name sortKey="Diamond, Jb" uniqKey="Diamond J">JB Diamond</name>
</author>
<author>
<name sortKey="Mcdermott, Kb" uniqKey="Mcdermott K">KB McDermott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burton, H" uniqKey="Burton H">H Burton</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Conturo, Te" uniqKey="Conturo T">TE Conturo</name>
</author>
<author>
<name sortKey="Akbudak, E" uniqKey="Akbudak E">E Akbudak</name>
</author>
<author>
<name sortKey="Ollinger, Jm" uniqKey="Ollinger J">JM Ollinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burton, H" uniqKey="Burton H">H Burton</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Diamond, Jb" uniqKey="Diamond J">JB Diamond</name>
</author>
<author>
<name sortKey="Raichle, Me" uniqKey="Raichle M">ME Raichle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buchel, C" uniqKey="Buchel C">C Buchel</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23308283</article-id>
<article-id pub-id-type="pmc">3538632</article-id>
<article-id pub-id-type="publisher-id">PONE-D-12-25769</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0053784</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Anatomy and Physiology</subject>
<subj-group>
<subject>Neurological System</subject>
<subj-group>
<subject>Sensory Physiology</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Computational Biology</subject>
<subj-group>
<subject>Computational Neuroscience</subject>
<subj-group>
<subject>Sensory Systems</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Neuroscience</subject>
<subj-group>
<subject>Computational Neuroscience</subject>
<subj-group>
<subject>Sensory Systems</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Neuroimaging</subject>
<subj-group>
<subject>Fmri</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Sensory Systems</subject>
<subj-group>
<subject>Visual System</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Sensory Perception</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Medicine</subject>
<subj-group>
<subject>Anatomy and Physiology</subject>
<subj-group>
<subject>Neurological System</subject>
<subj-group>
<subject>Sensory Physiology</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Sensory Systems</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Radiology</subject>
<subj-group>
<subject>Diagnostic Radiology</subject>
<subj-group>
<subject>Magnetic Resonance Imaging</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>The Development of Visual Areas Depends Differently on Visual Experience</article-title>
<alt-title alt-title-type="running-head">Visual Experience and Occipital Cortex Development</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Qin</surname>
<given-names>Wen</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Liu</surname>
<given-names>Yong</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jiang</surname>
<given-names>Tianzi</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yu</surname>
<given-names>Chunshui</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Op de Beeck</surname>
<given-names>Hans P.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Leuven, Belgium</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>chunshuiyu@yahoo.cn</email>
(CY);
<email>jiangtz@nlpr.ia.ac.cn</email>
(TJ)</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: CY TJ WQ. Performed the experiments: WQ CY YL. Analyzed the data: WQ YL. Contributed reagents/materials/analysis tools: WQ YL. Wrote the paper: WQ YL CY TJ.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>1</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>1</issue>
<elocation-id>e53784</elocation-id>
<history>
<date date-type="received">
<day>24</day>
<month>8</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>5</day>
<month>12</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Qin et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Visual experience plays an important role in the development of the visual cortex; however, recent functional imaging studies have shown that the functional organization is preserved in several higher-tier visual areas in congenitally blind subjects, indicating that maturation of visual areas depend unequally on visual experience. In this study, we aim to validate this hypothesis using a multimodality MRI approach. We found increased cortical thickness in the congenitally blind was present in the early visual areas and absent in the higher-tier ones, suggesting that the structural development of the visual cortex depends hierarchically on visual experience. In congenitally blind subjects, the decreased resting-state functional connectivity with the primary somatosensory cortex was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral stream than in the dorsal one, suggesting that the development of functional organization of the visual cortex also depends differently on visual experience. Moreover, congenitally blind subjects showed normal or increased functional connectivity between ipsilateral higher-tier and early visual areas, suggesting an indirect corticocortical pathway through which somatosenroy information can reach the early visual areas. These findings support our hypothesis that the development of visual areas depends differently on visual experience.</p>
</abstract>
<funding-group>
<funding-statement>This work was supported by grants from the National Basic Research Program of China (973 program, No. 2011CB707800), Natural Science Foundation of China (Grant Nos. 30870694,30900476 and 81270020), and the Open Projects Program of National Laboratory of Pattern Recognition. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="10"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Visual deprivation is an idea model to investigate how visual cortex is reorganized to ‘perceive’ the outside world. Congenitally blind (CB) subjects who have lost visual experiences since birth have been frequently reported to have altered structural and functional characteristics in the visual cortex, including increased cortical thickness
<xref ref-type="bibr" rid="pone.0053784-Jiang1">[1]</xref>
<xref ref-type="bibr" rid="pone.0053784-Bridge1">[3]</xref>
, brain regional homogeneity
<xref ref-type="bibr" rid="pone.0053784-Liu1">[4]</xref>
, metabolism and blood flow
<xref ref-type="bibr" rid="pone.0053784-DeVolder1">[5]</xref>
<xref ref-type="bibr" rid="pone.0053784-Uhl1">[8]</xref>
, decreased regional volume
<xref ref-type="bibr" rid="pone.0053784-Ptito1">[9]</xref>
<xref ref-type="bibr" rid="pone.0053784-Pan1">[11]</xref>
, white matter integrity
<xref ref-type="bibr" rid="pone.0053784-Shimony1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Shu1">[13]</xref>
, and altered resting-state functional connectivity (rsFC)
<xref ref-type="bibr" rid="pone.0053784-Liu2">[14]</xref>
. Moreover, converging evidence suggests that both the early and higher-tier visual areas in CB subjects are activated during performing a variety of tactile or auditory tasks
<xref ref-type="bibr" rid="pone.0053784-Bavelier1">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Fiehler1">[16]</xref>
. These findings indicate that visual experience plays an important role in shaping the structural and functional organization of the visual cortex during the process of development.</p>
<p>However, the notion of the visual cortex as a unimodal system molded only by visual experience has recently been challenged. In sighted subjects, tactile- or auditory-related tasks can activate the dorsal and ventral visual pathway
<xref ref-type="bibr" rid="pone.0053784-Amedi1">[17]</xref>
<xref ref-type="bibr" rid="pone.0053784-Kassuba1">[22]</xref>
and MT+
<xref ref-type="bibr" rid="pone.0053784-Ricciardi1">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Poirier1">[24]</xref>
. Furthermore, increasing evidence has confirmed that CB subjects preserved functional organization in several higher-tier visual areas when performing non-visual sensory task, such as the dorsal stream specialized for spatial processing
<xref ref-type="bibr" rid="pone.0053784-Renier1">[25]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Collignon1">[26]</xref>
and action control
<xref ref-type="bibr" rid="pone.0053784-Fiehler2">[27]</xref>
, the ventral stream for reading
<xref ref-type="bibr" rid="pone.0053784-Reich1">[28]</xref>
and object recognition
<xref ref-type="bibr" rid="pone.0053784-Pietrini1">[21]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Amedi3">[29]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Peltier1">[30]</xref>
, and the MT+ for motion processing
<xref ref-type="bibr" rid="pone.0053784-Ricciardi1">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Wolbers1">[31]</xref>
<xref ref-type="bibr" rid="pone.0053784-Poirier2">[34]</xref>
. It is more interesting to note that both CB and SC subjects using visual-to-auditory (or visual-to–tactile) sensory substitute devices (SSD) also recruited the ventral and dorsal visual pathway by both spatial and object related tasks, such as object recognition, motion, orientation and location detection, navigation, and so on
<xref ref-type="bibr" rid="pone.0053784-StriemAmit1">[35]</xref>
<xref ref-type="bibr" rid="pone.0053784-Kim2">[41]</xref>
. Although the extent and magnitude of the activation of the recruited areas differed between sighted control (SC) and CB individuals
<xref ref-type="bibr" rid="pone.0053784-Pietrini1">[21]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Ricciardi1">[23]</xref>
, the co-activation of the higher-tier visual cortex by non-visual sensory inputs in SC and CB highly indicates that the development of at least parts of their functional organization does not require visual experience
<xref ref-type="bibr" rid="pone.0053784-Kupers2">[42]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Reich2">[43]</xref>
.</p>
<p>Although the structural and functional reorganization of the visual cortex have been frequently studied in CB, little is known on the differential effects of visual deprivation on the development of the structural and resting-state functional organization of the early and higher visual cortices. Based on the earlier findings, we hypothesize that the development of visual areas depends differently on visual experience. The early visual areas are mainly modulated by visual experience through their dense connections with the visual input system, but they can also respond to non-visual sensory inputs via sparse connections with those modalities
<xref ref-type="bibr" rid="pone.0053784-Driver1">[44]</xref>
. Although the higher-tier visual areas receive visual inputs from the early ones, they also have dense connections with non-visual sensory modalities
<xref ref-type="bibr" rid="pone.0053784-Falchier1">[45]</xref>
and can be molded by non-visual sensory stimuli. In order to verify our hypothesis, we introduce a multimodality MRI approach, including cortical thickness and resting-state functional connectivity (rsFC) analyses. We predict that the cortical thickness of the early visual areas will be altered in CB subjects, whereas that of the higher-tier areas will be less affected or even normal. We also predict that the resting-state functional connectivity (rsFC) of the early visual areas with primary somatosensory cortex (S1) cannot develop normally in CB subjects, but those of the higher-tier ones will develop normally.</p>
<p>If our hypothesis is correct, the preserved rsFC between the higher-tier visual areas and non-visual sensory areas may explain the activation of these higher-tier visual areas in CB subjects by non-visual tasks
<xref ref-type="bibr" rid="pone.0053784-Renier1">[25]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Collignon1">[26]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Mahon1">[46]</xref>
. However, it cannot explain why the early visual areas are also activated in the CB when performing these tasks. One possible mechanism is that the early visual areas may receive non-visual sensory information via the higher-tier ones that have normally developed rsFC with the non-visual sensory areas. This possibility facilitates the hypothesis that the rsFC between the higher-tier and early visual areas will develop normally in CB subjects.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Subjects</title>
<p>A total of 95 right-handed subjects comprising 39 CB (24 males, mean age 24.4±4.8 years) and 56 SC subjects (40 males; mean age 25.1±4.7 years) participated in this experiment. Group comparisons did not reveal any significant differences in either age (t = −0.64, P = 0.52) (by two-sample t-test) or gender (chi-square = 1.02, P = 0.31) (by chi-square test). All CB subjects had lost their sight since birth, and 20 of them had weak light perception. None of the CB subjects had experience on pattern vision, such as contours, shapes or orientation, etc. (
<xref ref-type="table" rid="pone-0053784-t001">Table 1</xref>
). The protocol was approved by the Medical Research Ethics Committee of Tianjin Medical University General Hospital, and written informed consent was obtained from all participants prior to the experiment.</p>
<table-wrap id="pone-0053784-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0053784.t001</object-id>
<label>Table 1</label>
<caption>
<title>Demographic information of congenitally blind subjects.</title>
</caption>
<alternatives>
<graphic id="pone-0053784-t001-1" xlink:href="pone.0053784.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Subjects</td>
<td align="left" rowspan="1" colspan="1">Gender</td>
<td align="left" rowspan="1" colspan="1">Age (years)</td>
<td align="left" rowspan="1" colspan="1">Light perception</td>
<td align="left" rowspan="1" colspan="1">Causes of blindness</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CB001</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Retinal dysplasia</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB002</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Retinal pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB003</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Optic nerve atrophy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB004</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Fundus oculi illness</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB005</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Eyeball dysplasia</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB006</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Retinal pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB007</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB008</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Retinal dystrophia</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB009</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Congenital cataract</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB010</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Congenital cataract</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB011</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Optic nerve atrophy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB012</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Microphthalmus</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB013</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB014</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Microphthalmus</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB015</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Hypoplasia of fundus oculi</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB016</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB017</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Hypoplasia of fundus oculi</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB018</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Congenital microphthalmus</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB019
<xref ref-type="table-fn" rid="nt101">*</xref>
</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Hypoplasia of fundus oculi</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB020</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Congenital cataract</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB021</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Hypoplasia of fundus oculi</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB022</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Retinitis pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB023</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Retinitis pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB024</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Optic nerve atrophy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB025</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Optic nerve atrophy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB026</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Retinitis pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB027</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Retinitis pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB028</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Optic hypoplasia</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB029</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Congenital glaucoma</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB030</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Optic nerve hypoplasia</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB031</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Congenital glaucoma</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB032</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Optic nerve atrophy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB033</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Optic nerve atrophy</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB034</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Retinitis pigmentosa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB035</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Congenital cataract</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB036</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Congenital glaucoma</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB037
<xref ref-type="table-fn" rid="nt101">*</xref>
</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">Weak</td>
<td align="left" rowspan="1" colspan="1">Congenital glaucoma</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB038</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Optic nerve hypoplasia</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB039</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">None</td>
<td align="left" rowspan="1" colspan="1">Retrolental fibroplasia</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label>*</label>
<p>These two CB subjects were excluded from rest-state functional connectivity analysis for excessive head motion. CB  =  congenitally blind.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s2b">
<title>MRI data acquisition</title>
<p>MRI data were obtained using a 3.0-Tesla MR scanner (Trio Tim system; Siemens, Erlangen, Germany) with a 12-channel head coil. Structural images were acquired using 3D magnetization-prepared rapid-acquisition gradient echo (MP-RAGE) sequences with the following parameters: repetition time (TR)/echo time (TE)/inversion time (TI)  = 2000/2.6/900 ms, flip angle  = 9°, matrix  = 256×224, field of view (FOV)  = 256 mm ×224 mm, 176 continuous sagittal slices with a 1-mm thickness. The resting-state fMRI data were acquired with a gradient-echo echo-planar imaging (GRE-EPI) sequence. The acquisition parameters included: TR/TE  = 2000/30 ms, flip angle  = 90°, matrix  = 64×64, FOV  = 220 mm ×220 mm, 32 axial slices with a 3-mm slice thickness and a 1-mm gap. During the fMRI scans, all subjects were instructed to keep their eyes closed, to relax, and to move as little as possible.</p>
</sec>
<sec id="s2c">
<title>Cortical thickness computation</title>
<p>Cortical thickness was calculated using Freesurfer V.5.1.0
<xref ref-type="bibr" rid="pone.0053784-Dale1">[47]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Fischl1">[48]</xref>
(
<ext-link ext-link-type="uri" xlink:href="http://surfer.nmr.mgh.harvard.edu/">http://surfer.nmr.mgh.harvard.edu/</ext-link>
). All procedures were performed using the automated surface-based pipeline with default parameters of the Freesurfer package, which mainly included segmentation, surface reconstruction, and surface-based spatial registration. First, the 3D T1 structural images were registered with the Talairach atlas
<xref ref-type="bibr" rid="pone.0053784-Talairach1">[49]</xref>
, and the intensity variation in the white matter was removed by intensity normalization. The skull was stripped using a deformable template model
<xref ref-type="bibr" rid="pone.0053784-Segonne1">[50]</xref>
. White matter was then segmented based on intensity and neighbor constraints. Thereafter, the gray/white surface was obtained by tessellation of the gray/white matter boundary and topology correction. The pial surface was generated by nudging the gray/white matter surface along the T1 intensity gradients to reach the gray matter/cerebrospinal fluid boundary. Both surfaces were represented by vertices. The distance between the gray/white matter surface and its corresponding pial surface was defined as the cortical thickness
<xref ref-type="bibr" rid="pone.0053784-Fischl2">[51]</xref>
. To compare cortical thickness between groups, the cortical surface of each subject was transformed into an average surface space (fsaverage template, provided in Freesurfer package) using a spherical registration method
<xref ref-type="bibr" rid="pone.0053784-Fischl3">[52]</xref>
. Finally, the cortical thickness maps were smoothed with a Gaussian kernel of 10 mm full width at half maximum (FWHM).</p>
</sec>
<sec id="s2d">
<title>Resting-state functional connectivity analysis</title>
<p>The resting-state fMRI data were preprocessed using Statistical Parametric Mapping (SPM8,
<ext-link ext-link-type="uri" xlink:href="http://www.fil.ion.ucl.ac.uk/spm">http://www.fil.ion.ucl.ac.uk/spm</ext-link>
). The preprocessing steps included: (1) the first 10 volumes of blood oxygen level-dependent (BOLD) time series were removed for signal instability caused by T1 relaxation; (2) slice timing was performed to correct the acquisition time delay between slices within each volume; (3) the motion parameters were estimated, and each volume was realigned to the first volume (as a result, subjects CB019 and CB037 were excluded from further analysis because their translational or rotational parameters exceeded 2 mm or 2 degrees); (4) the remaining data set was normalized into the Montreal Neurological Institute (MNI) EPI template and resampled into 2×2×2 mm
<sup>3</sup>
voxels; (5) the linear trend and several sources of spurious variances, including the estimated motion parameters, and average BOLD signals in the ventricular and white matter regions were removed from the data through linear regression; (6) a band-pass frequency filter (0.01–0.08 Hz) was applied to reduce low-frequency drift and high-frequency noise; (7) the filtered BOLD images were spatially smoothed by convolution with an isotropic Gaussian kernel (FWHM  = 6 mm).</p>
<p>The S1 was defined using the probabilistic map of Harvard-Oxford Cortical Structural Atlas (implemented in FSL package), voxels with probability higher than 50% were included. The region of interest (ROI) of each visual area was extracted using the Human PALS-12 atlas
<xref ref-type="bibr" rid="pone.0053784-VanEssen1">[53]</xref>
. Because the PASL-12 atlas is population-averaged and surface-based, the surface ROIs were registrated into volumetric ones in MNI space that contain the voxels between white/gray matter surface and pial surface. We first computed the correlation coefficients between the mean time series of the S1 and that of each voxel of the whole visual cortex in a voxel-wise manner. Furthermore, we also calculated the correlation coefficients between the mean time series of the S1 and that of each visual ROI, and between every pair of visual ROIs. Before statistical analysis, the correlation coefficients were transformed into z-values using the Fisher r-to-z transformation to improve the normality.</p>
</sec>
<sec id="s2e">
<title>Statistical analysis</title>
<p>Group comparison of cortical thickness was performed in a vertex-wise manner using a general linear model (GLM) with age, gender and whole brain mean thickness as the nuisance covariates and within a mask bilaterally including the visual cortex and S1. A FDR method with a threshold of
<italic>P</italic>
<0.01 was selected to correct for multiple comparisons in combination with a cluster size threshold of
<italic>P</italic>
<0.05 (Monte Carlo simulations). Furthermore, the mean cortical thickness of each visual area of each subject was extracted based on the Human PALS-12 atlas. After regressing out age, gender and whole brain mean thickness effects, the ROI-based group comparisons were carried out using two-sample t-test at
<italic>P</italic>
<0.05 (Bonferroni corrected).</p>
<p>Voxel-based rsFC analyses between the S1 and the whole visual cortex were performed using an FDR threshold of
<italic>P</italic>
<0.01. First, individual z-map for each group (CB or SC) were entered into a random effect one-sample t-test in a voxel-wise manner to determine the visual areas that showed significant correlations with the seed ROIs. Then, a two-sample t-test was carried out to investigate group differences in the rsFC. To validate the results of the voxel-based rsFC analyses, we further compared the group differences in the rsFC between S1 and each visual area using a two-sample t-test after regressing out age and gender influences (
<italic>P</italic>
<0.05, Bonferroni corrected). Finally, we investigated inter-group differences in the rsFC between every two visual areas using a two-sample t-test after regressing out age and gender effects (
<italic>P</italic>
<0.05, Bonferroni corrected).</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Vertex-based cortical thickness analyses</title>
<p>Compared with SC subjects, CB individuals showed significantly increased cortical thickness in the early visual areas (
<italic>P</italic>
<0.01, FDR corrected); however, most of the higher-tier visual areas, especially the dorsal visual stream, did not show any significant changes in cortical thickness (
<xref ref-type="fig" rid="pone-0053784-g001">Fig. 1</xref>
). No significant group differences were found in cortical thickness in S1 even using a loose threshold (
<italic>P</italic>
<0.05, uncorrected). To investigate whether weak light perception affected the cortical thickness analysis results, we also compared the cortical thickness between CB subjects with and without light perception. There was no significant group difference even using an uncorrected
<italic>P</italic>
<0.05.</p>
<fig id="pone-0053784-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0053784.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Comparison maps of cortical thickness between CB and SC subjects in a vertex-wise manner.</title>
<p>
<bold>
<italic>A</italic>
</bold>
, significantly increased cortical thickness in CB subjects is observed in the visual areas while absent in primary somatosensory cortex (S1) within a searching mask including the whole visual cortex and S1 (
<italic>P</italic>
<0.01, FDR corrected).
<bold>
<italic>B</italic>
</bold>
, significantly increased cortical thickness in CB subjects is observed in the early visual areas (V1, V2 and VP), but not in higher-tier ones (V3A, V7, MT+ and V8) and in S1. Scale bar represents the log-transformed
<italic>P</italic>
value.</p>
</caption>
<graphic xlink:href="pone.0053784.g001"></graphic>
</fig>
</sec>
<sec id="s3b">
<title>ROI-based cortical thickness analyses</title>
<p>To further elucidate the specific change in cortical thickness of each visual area, we extracted the mean cortical thickness of each visual area in each subject based on the Human PALS-12 atlas (
<xref ref-type="fig" rid="pone-0053784-g002">Fig. 2
<italic>D</italic>
</xref>
). In the left hemisphere, CB subjects showed significantly increased cortical thickness relative to SC subjects in V1, V2, V3d and LO (
<italic>P</italic>
<0.05, Bonferroni corrected) (
<xref ref-type="fig" rid="pone-0053784-g002">Fig. 2
<italic>A</italic>
</xref>
). Similarly, in the right hemisphere, CB subjects had significantly increased cortical thickness in V1, V2 and VP (
<italic>P</italic>
<0.05, Bonferroni corrected) (
<xref ref-type="fig" rid="pone-0053784-g002">Fig. 2
<italic>B</italic>
</xref>
). The mean increase amplitude in cortical thickness of CB subjects versus SC subjects was 8% in V1, 7% in V2, 6% in VP, 5% in V3d, 4% in V3A, and 3% in the LO (
<xref ref-type="fig" rid="pone-0053784-g002">Fig. 2
<italic>C</italic>
</xref>
). The remaining higher-tier visual areas did not show any significant group differences in cortical thickness even using an uncorrected
<italic>P</italic>
<0.05.</p>
<fig id="pone-0053784-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0053784.g002</object-id>
<label>Figure 2</label>
<caption>
<title>ROI-based analyses of the cortical thickness between CB and SC subjects.</title>
<p>An asterisk (*) represents significant difference between groups.
<bold>
<italic>A</italic>
</bold>
and
<bold>
<italic>B</italic>
</bold>
, significant increases in cortical thickness are found in the left V1, V2, V3d and LO, and in the right V1, V2 and VP (
<italic>P</italic>
<0.05, Bonferroni corrected).
<bold>
<italic>C</italic>
</bold>
, percent changes of cortical thickness in CB subjects relative to SC subjects. The cortical thickness is significantly increased in the early visual areas (V1, V2, VP and V3d), but not in several higher-tier visual areas (V3A, V7, MT+ and V8) in CB subjects.
<bold>
<italic>D</italic>
</bold>
, visual areas derived from the Human PALS-12 atlas.</p>
</caption>
<graphic xlink:href="pone.0053784.g002"></graphic>
</fig>
</sec>
<sec id="s3c">
<title>Voxel-based rsFC analyses between S1 and visual areas</title>
<p>The S1 of SC subjects showed positive rsFC with most of the visual areas (
<xref ref-type="fig" rid="pone-0053784-g003">Fig. 3
<italic>A</italic>
</xref>
) (
<italic>P</italic>
<0.01, FDR corrected). In contrast, the S1 of CB subjects had positive rsFC with only parts of the higher-tier visual areas (
<italic>P</italic>
<0.01, FDR corrected) (
<xref ref-type="fig" rid="pone-0053784-g003">Fig. 3
<italic>B</italic>
</xref>
). Group comparison showed that CB subjects had significantly decreased rsFC between non-visual sensory ROIs and visual areas relative to SC subjects (
<xref ref-type="fig" rid="pone-0053784-g003">Fig. 3
<italic>C</italic>
</xref>
). Moreover, the early visual areas were more pronouncedly affected than the higher-tier ones, and the ventral stream was more pronouncedly affected than the dorsal one.</p>
<fig id="pone-0053784-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0053784.g003</object-id>
<label>Figure 3</label>
<caption>
<title>The rsFC maps between the S1 and the visual areas.</title>
<p>
<bold>
<italic>A</italic>
</bold>
, the rsFC map of SC subjects.
<bold>
<italic>B</italic>
</bold>
, the rsFC map of CB subjects.
<bold>
<italic>C</italic>
</bold>
, the differential maps of rsFC between CB and SC subjects with thresholded at P<0.05 (FDR corrected). The upper and lower panel represents the FC results of the S1 area in the left and right hemisphere, respectively. Compared with SC subjects, CB subjects showed significantly decreased (cool color) rsFC between the S1 and the visual areas, especially the early visual areas (V1 and V2) and the ventral stream (VP and V4v).</p>
</caption>
<graphic xlink:href="pone.0053784.g003"></graphic>
</fig>
</sec>
<sec id="s3d">
<title>ROI-based rsFC analyses between S1 and visual areas</title>
<p>We further computed the rsFC between S1 and each visual ROI. Compared with those of SC subjects, the S1 of the CB subjects showed significantly decreased rsFC with the early visual areas (V1 and V2) and the ventral stream (VP, V4v and V8), but not with several higher-tier visual areas in the dorsal visual stream (V3d, V3A, V7 and MT+), using a threshold of
<italic>P</italic>
<0.05 (Bonferroni corrected) (
<xref ref-type="fig" rid="pone-0053784-g004">Fig. 4</xref>
). The hierarchical trend that the early visual areas are more affected than the higher-tier ones is also present in rsFC pattern in CB.</p>
<fig id="pone-0053784-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0053784.g004</object-id>
<label>Figure 4</label>
<caption>
<title>ROI analyses of the rsFC between the S1 and visual areas.</title>
<p>
<bold>
<italic>A</italic>
</bold>
and
<bold>
<italic>B</italic>
</bold>
, the mean rsFC of CB (blue bar) and SC (green bar) subjects between intra-hemisphere and intra-hemisphere, respectively. An asterisk represents significantly differences (
<italic>P</italic>
<0.05, Bonferroni corrected).
<bold>
<italic>C</italic>
</bold>
, the defined S1 and visual ROIs.
<bold>
<italic>D</italic>
</bold>
, rsFC patterns between S1 and visual areas in the SC.
<bold>
<italic>E</italic>
</bold>
, rsFC patterns between S1 and visual areas in the CB.
<bold>
<italic>F</italic>
</bold>
, group differences of rsFC between CB and SC subjects. Orange and light blue edges represent positive and negative effects. Blue, red and green nodes represent S1, affected and non-affected visual areas. Compared with SC subjects, CB subjects showed significantly decreased rsFC of the S1 with the early visual areas and the ventral stream ones, with no difference being observed in several higher-tier visual areas.</p>
</caption>
<graphic xlink:href="pone.0053784.g004"></graphic>
</fig>
</sec>
<sec id="s3e">
<title>ROI-based rsFC analysis within the visual areas</title>
<p>We investigated the rsFC between each pair of the visual areas and found significantly increased rsFC (
<italic>P</italic>
<0.05, Bonferroni corrected) between the early visual areas (V1 and V2) and several higher-tier visual areas (V8 and LO) in the same hemisphere in CB subjects (
<xref ref-type="fig" rid="pone-0053784-g005">Fig. 5</xref>
). We also found decreased rsFC between several inter-hemispheric visual areas (
<xref ref-type="fig" rid="pone-0053784-g005">Fig. 5</xref>
).</p>
<fig id="pone-0053784-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0053784.g005</object-id>
<label>Figure 5</label>
<caption>
<title>The rsFC patterns within the visual areas in CB and SC subjects.</title>
<p>
<bold>
<italic>A</italic>
</bold>
, the mean rsFC in CB and SC subjects, and group comparisons (
<italic>P</italic>
<0.05, Bonferroni corrected), in which hot and cool colors represent positive and negative effects, respectively. Color bar represents the log-transformed
<italic>P</italic>
value.
<bold>
<italic>B</italic>
</bold>
, the rsFC patterns between each pair of the ipsilateral visual areas.
<bold>
<italic>C</italic>
</bold>
, The rsFC patterns between each pair of inter-hemispheric visual areas. Orange and light blue lines represent increased and decreased rsFC. Both CB and SC subjects show positive rsFC between visual areas. Significantly increased rsFC between the early (V1 and V2) and several ipsilateral higher-tier visual areas (V8 and LO), while decreased rsFC between inter-hemispheric visual areas are shown in CB subjects.</p>
</caption>
<graphic xlink:href="pone.0053784.g005"></graphic>
</fig>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>In this study, combined structural and functional analyses, we found CB subjects showed significantly increased cortical thickness in the early visual areas while absent in the higher-tier ones; furthermore, the decreased rsFC with the S1 was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral visual stream than in the dorsal one, suggesting that the development of the structural and functional organization of the visual cortex depends differently on visual experience. Moreover, CB subjects showed normal or increased rsFC between the higher-tier and early visual areas in the ipsilateral hemisphere, suggesting an indirect corticocortical pathway through which non-visual sensory information can reach the early visual areas.</p>
<sec id="s4a">
<title>The structural and functional reorganization in CB</title>
<p>It is important to note that evidence of reorganization in the visual cortex in CB comes from studies with different modalities. How to reconcile findings from these modalities is critical for understanding the neural mechanisms of the altered cortical organization in CB. For example, the contradictory findings of the increased cortical thickness
<xref ref-type="bibr" rid="pone.0053784-Jiang1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Park1">[2]</xref>
and decreased gray matter volume (GMV)
<xref ref-type="bibr" rid="pone.0053784-Ptito1">[9]</xref>
in the early visual cortex in the early blind could be explained by the overly reduced surface area (Jiang et al., 2009). Similarly, the unchanged cortical thickness
<xref ref-type="bibr" rid="pone.0053784-Jiang1">[1]</xref>
and decreased GMV
<xref ref-type="bibr" rid="pone.0053784-Lepore1">[54]</xref>
in the visual cortex in the late-onset blind could also be driven by reduced surface area (Jiang et al., 2009).</p>
<p>The following factors may affect the morphology of the early visual cortex in CB. Firstly, the synaptic pruning of the visual cortex is dependent on visual experience
<xref ref-type="bibr" rid="pone.0053784-Chechik1">[55]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Bourgeois1">[56]</xref>
and is interfered in the CB. Thus the relatively high synaptic density may contribute to the thickened early visual cortex in CB
<xref ref-type="bibr" rid="pone.0053784-Jiang1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Park1">[2]</xref>
. However, these “redundant” synapses cannot explain the recruitment of early visual cortex in a variety of non-visual tasks in CB
<xref ref-type="bibr" rid="pone.0053784-Bavelier1">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Fiehler1">[16]</xref>
. Secondly, early visual deprivation really results in the increases in corticocortical
<xref ref-type="bibr" rid="pone.0053784-Karlen1">[57]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Kupers3">[58]</xref>
, thalamocortical
<xref ref-type="bibr" rid="pone.0053784-Karlen1">[57]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Rehkamper1">[59]</xref>
and intracortical connections
<xref ref-type="bibr" rid="pone.0053784-Callaway1">[60]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Sur1">[61]</xref>
in the visual areas. These increased connections may contribute to the increased cortical thickness in the CB and may form the structural basis for the visual cortex responsing to non-visual stimuli. Finally, axonal degeneration secondary to the peripheral damage of the anterior visual pathway will result in the atrophy of the gray and white ma motion radiation
<xref ref-type="bibr" rid="pone.0053784-Ptito1">[9]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Shu1">[13]</xref>
in CB subjects. The atrophied white matter of the visual area may account for the reduction of the surface area in the CB. Therefore, the neural mechanisms of the thickened visual cortex in the CB are complex and represent a final consequence of multiple factors because increased synaptic density contributes to the increased cortical thickness whereas axonal degeneration lead to the decrease in cortical thickness.</p>
<p>Different functional connectivity (FC) patterns between the early visual cortex and non-visual sensory cortex have been reported during resting-state and task-state in the CB. The early blind subjects exhibited increased FC between the S1 and early visual cortex during the stimulation of the S1
<xref ref-type="bibr" rid="pone.0053784-Wittenberg1">[62]</xref>
and demonstrated increased effective connectivity from the primary auditory cortex to V1 when performing an auditory discrimination task
<xref ref-type="bibr" rid="pone.0053784-Klinge1">[63]</xref>
. During resting-state, however, decreased rsFCs between the V1 and non-visual sensory cortex have been frequently reported
<xref ref-type="bibr" rid="pone.0053784-Liu2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Yu1">[64]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Bedny1">[65]</xref>
. Although there is a close relationship in the FC patterns between resting-state and task-state
<xref ref-type="bibr" rid="pone.0053784-He1">[66]</xref>
, it does not mean that they share the same FC patterns. For example, significant differences in FC intensity between the fusiform gyrus and calcarine sulcus have been found under different task conditions
<xref ref-type="bibr" rid="pone.0053784-NormanHaignere1">[67]</xref>
. The effective connectivity that measures the causal flow of one node to another is substantially different with functional connectivity that represents the simultaneous coupling of two nodes
<xref ref-type="bibr" rid="pone.0053784-Matsui1">[68]</xref>
. These factors might explain the different connectivity changes in CB under rest-state and task-state. The decreased rsFC only reflects the decoupling of brain activity between the early visual cortex and S1; however, it cannot simply imply the poor performance in handling tactile information, neither the poor activation in the occipital cortex.</p>
<p>The surprising findings with dramatically decreased resting-state FC between LO and S1 is difficult to explain the increased recruitments of this area in tactile processing in the CB, which had been confirmed by several previous task-evoked studies. In fact, not only the LO, but also the ventral pathway areas such as V4/V8 also encountered the same dilemma. Besides the difference in functional representation between task and rest-state as stated above, another possibility is that the tactile signals might reach the LO C and ventral visual areas via other indirect pathways. For example, increased resting-state FCs between occipital cortex and the prefrontal cortex have been reported by several research groups
<xref ref-type="bibr" rid="pone.0053784-Liu2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Bedny2">[69]</xref>
. As a result, the strengthened frontal-occipital FC might convey attention- (or working memory) modulated non-visual sensory signals to these object-related occipital areas for further manipulation. However, this hypothesis needs to be validated by further studies.</p>
<p>It has been suggested that the intrinsic functional connectivity reflects monosynaptic or polysynaptic connections
<xref ref-type="bibr" rid="pone.0053784-Greicius1">[70]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Honey1">[71]</xref>
. Bilateral visual cortices were anatomically connected by fibers of the splenium of corpus callosum
<xref ref-type="bibr" rid="pone.0053784-Conturo1">[72]</xref>
. Consequently, our finding of the decreased rsFC between inter-hemispheric visual areas might be as a result of the disrupted white matter integrity of these fibers
<xref ref-type="bibr" rid="pone.0053784-Bridge1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Shimony1">[12]</xref>
.</p>
</sec>
<sec id="s4b">
<title>The development of the visual cortex depends differently on visual experience</title>
<p>As mentioned in the introduction, the activation of the visual cortex by non-visual sensory stimuli both in SC and CB indicates that the visual cortex is supramodal in nature, and the development of the functional architecture in the higher visual cortex does not require visual experience to some extent (for reviews, see
<xref ref-type="bibr" rid="pone.0053784-Kupers2">[42]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Reich2">[43]</xref>
). In the present study, we found relative normally developed cortical thickness and rsFC in the higher visual cortex, especially in the dorsal pathway, which provided another aspect of evidence to support this concept. Furthermore, the present study provides converging evidence suggesting that the development of the visual areas depends differently on visual experience. Specifically, the early visual areas depend more on visual experience than the higher-tier ones, and the ventral stream visual areas depend more on visual experience than the dorsal ones. The early visual areas of sighted persons and animals receive sensory inputs primarily from the visual system and may also receive some direct or indirect inputs from non-visual sensory modalities (for reviews, see
<xref ref-type="bibr" rid="pone.0053784-Driver1">[44]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Falchier1">[45]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Karlen1">[57]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Bizley1">[73]</xref>
). However, the direct connections between early sensory areas of different modalities seem relatively sparse, and their functions remain unclear
<xref ref-type="bibr" rid="pone.0053784-Driver1">[44]</xref>
. In contrast, the higher-tier visual areas have dense connections with non-visual sensory areas and have many feedback connections with the early visual areas
<xref ref-type="bibr" rid="pone.0053784-Falchier1">[45]</xref>
. The specific connection patterns of the early and higher-tier visual areas may determine their dependence on sensory experiences. The early visual areas are heavily connected with the visual thalamus but sparsely connected with non-visual sensory areas. As a result, these areas depend heavily on visual experience and less on non-visual inputs. The higher-tier visual areas have more connections with non-visual sensory areas than the early ones, and their development can be shaped by these non-visual sensory experiences. However, future studies are required to determine whether this mechanism explains the differential effects of visual experience on the ventral and dorsal visual streams.</p>
<p>It should be noted that differences in maturation rate and their susceptibility to visual deprivation between different visual areas might be another important factor that affects the structural and functional reorganization after early visual deprivation. For example, the sensitive period for normal maturation and susceptibility to damage of global motion (mediated primarily by the higher visual areas such as the MT+) appears to be much earlier and shorter than the sensitive period for those of visual acuity (mediated primarily by the early visual areas)
<xref ref-type="bibr" rid="pone.0053784-Lewis1">[74]</xref>
. The development of the motion and action ability (mediated by the dorsal visual stream) was found to be much earlier than that of the contour and form perceptual ability (mediated by the ventral visual stream)
<xref ref-type="bibr" rid="pone.0053784-Kiorpes1">[75]</xref>
<xref ref-type="bibr" rid="pone.0053784-Kiorpes2">[78]</xref>
. Earlier development of dorsal than ventral stream had also been validated by physiological and anatomical findings
<xref ref-type="bibr" rid="pone.0053784-Distler1">[79]</xref>
<xref ref-type="bibr" rid="pone.0053784-Rodman1">[82]</xref>
. The relatively late developed visual areas (early visual areas and ventral stream) are more susceptive to early visual deprivation, which can explain our findings of the prominent structural and functional alterations in these visual areas.</p>
</sec>
<sec id="s4c">
<title>The neural pathway from non-visual sensory areas to the visual cortex</title>
<p>Because both the early and higher-tier visual areas can respond to tactile and auditory stimuli in CB subjects, it is important to understand how non-visual sensory information reaches the visual areas, especially the early ones. A tentative hypothesis is that the visual areas receive non-visual information through rewired thalamocortical connections
<xref ref-type="bibr" rid="pone.0053784-Karlen1">[57]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Rehkamper1">[59]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Bronchti1">[83]</xref>
, i.e., the lateral geniculate nucleus receives rewired non-visual projections from the auditory and somatosensory thalamic nuclei and then projects fibers to the visual areas in CB subjects. However, this hypothesis is not supported by findings of atrophy in the lateral geniculate nucleus and in its output projections
<xref ref-type="bibr" rid="pone.0053784-Noppeney1">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Shimony1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Shu1">[13]</xref>
. An alternative hypothesis is that the visual areas receive non-visual sensory information through corticocortical connections between these sensory modalities
<xref ref-type="bibr" rid="pone.0053784-Falchier1">[45]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Bock1">[84]</xref>
, which is supported by task-based fMRI studies
<xref ref-type="bibr" rid="pone.0053784-Werner1">[85]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-denOuden1">[86]</xref>
, and a resting-state fMRI study
<xref ref-type="bibr" rid="pone.0053784-Eckert1">[87]</xref>
in sighted subjects, an effective connectivity study
<xref ref-type="bibr" rid="pone.0053784-Klinge1">[63]</xref>
, and transcranial magnetic stimulation (TMS) studies in blind humans
<xref ref-type="bibr" rid="pone.0053784-Kupers3">[58]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Wittenberg1">[62]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Collignon2">[88]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Ptito3">[89]</xref>
. Furthermore, these corticocortical connections can be subdivided into direct long-range connections and indirect connections via intervening multimodal association areas. The former has been found in immature cats and hamsters and mature primates
<xref ref-type="bibr" rid="pone.0053784-Falchier1">[45]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Karlen1">[57]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Innocenti1">[90]</xref>
, while the latter is found in primates
<xref ref-type="bibr" rid="pone.0053784-Rockland1">[91]</xref>
and is confirmed by an effective connectivity study in humans
<xref ref-type="bibr" rid="pone.0053784-Fujii1">[92]</xref>
. Our findings of decreased rsFC between the early visual areas and S1 and the normal or even increased rsFC between the higher-tier visual areas and S1 and between the early and higher-tier visual areas in the same hemisphere in CB subjects would support the hypothesis wherein indirect corticocortical connections transmit non-visual sensory information to the early visual areas. Specifically, in the CB, non-visual sensory areas could receive tactile or auditory information and then transmit it to the early visual areas via higher-tier ones. It should be noted that this hypothesis needs further confirmation, although it seems to be supported by two effective connectivity studies
<xref ref-type="bibr" rid="pone.0053784-Klinge1">[63]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Fujii1">[92]</xref>
.</p>
</sec>
<sec id="s4d">
<title>Issues regarding to functional preservation and plasticity in occipital cortex</title>
<p>In sighted individuals, visual information is hierarchically processed from V1 to higher-tier visual areas along the ventral and dorsal pathways; however, this visual flow is interrupted by early visual deprivation. In contrast to the relative preserved functional preferences in the extrastriate areas after visual deprivation, V1 seems to be specially evoked by higher-order cognitive tasks such as memory
<xref ref-type="bibr" rid="pone.0053784-Amedi5">[93]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Raz1">[94]</xref>
and language
<xref ref-type="bibr" rid="pone.0053784-Bedny1">[65]</xref>
,
<xref ref-type="bibr" rid="pone.0053784-Burton1">[95]</xref>
<xref ref-type="bibr" rid="pone.0053784-Burton3">[97]</xref>
. The preserved functional preferences are supported by our findings of the relatively unchanged functional connectivity between the extrastriate areas and S1. Furthermore, the decreased FC between early visual areas and S1 does not support direct tactile signal processing in V1; instead, this finding indicates that V1 might process higher cognitive-demanding functions, as revealed by previous task-driven results. Finally, as indicated by previous findings and present study, the intact indirect corticocortical pathways through which peripheral signals transmit from non-visual sensory areas to the “higher-tier” extrastriate areas and then to V1 is consistent with hypothesis by Buchel
<xref ref-type="bibr" rid="pone.0053784-Buchel1">[98]</xref>
that the cortical hierarchy in the occipital cortex might be reversed after early visual deprivation, such that extrastriate areas feed into V1, while V1 becomes a higher-tier area capable of processing multiple cognitive functions.</p>
<p>In summary, based on the cortical thickness and rsFC analyses in CB subjects, we propose that the development of visual areas depends differently on visual experience, which can explain most previous structural and functional findings in the visual areas of both sighted and blind subjects. Based on the rsFC analyses, we also suggest that the indirect corticocortical connection is a possible pathway through which non-visual sensory information could reach the early visual areas.</p>
</sec>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="pone.0053784-Jiang1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jiang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Shi</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Thick Visual Cortex in the Early Blind</article-title>
.
<source>J Neurosci</source>
<volume>29</volume>
:
<fpage>2205</fpage>
<lpage>2211</lpage>
<pub-id pub-id-type="pmid">19228973</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Park1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>HJ</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>EY</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Oh</surname>
<given-names>MK</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area</article-title>
.
<source>Neuroimage</source>
<volume>47</volume>
:
<fpage>98</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="pmid">19361567</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bridge1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bridge</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Cowey</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ragge</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Watkins</surname>
<given-names>K</given-names>
</name>
(
<year>2009</year>
)
<article-title>Imaging studies in congenital anophthalmia reveal preservation of brain architecture in ‘visual’ cortex</article-title>
.
<source>Brain</source>
<volume>132</volume>
:
<fpage>3467</fpage>
<lpage>3480</lpage>
<pub-id pub-id-type="pmid">19892766</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Liu1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Increased regional homogeneity of blood oxygen level-dependent signals in occipital cortex of early blind individuals</article-title>
.
<source>Neuroreport</source>
<volume>22</volume>
:
<fpage>190</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="pmid">21304328</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-DeVolder1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>De Volder</surname>
<given-names>AG</given-names>
</name>
,
<name>
<surname>Bol</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Blin</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Robert</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Arno</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>1997</year>
)
<article-title>Brain energy metabolism in early blind subjects: neural activity in the visual cortex</article-title>
.
<source>Brain Res</source>
<volume>750</volume>
:
<fpage>235</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="pmid">9098549</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Mishina1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mishina</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Senda</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kiyosawa</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ishiwata</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>De Volder</surname>
<given-names>AG</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness</article-title>
.
<source>Neuroimage</source>
<volume>19</volume>
:
<fpage>125</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">12781732</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Veraart1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Veraart</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>De Volder</surname>
<given-names>AG</given-names>
</name>
,
<name>
<surname>Wanet-Defalque</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Bol</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Michel</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>1990</year>
)
<article-title>Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset</article-title>
.
<source>Brain Res</source>
<volume>510</volume>
:
<fpage>115</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="pmid">2322834</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Uhl1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Uhl</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Franzen</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Podreka</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Steiner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Deecke</surname>
<given-names>L</given-names>
</name>
(
<year>1993</year>
)
<article-title>Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans</article-title>
.
<source>Neurosci Lett</source>
<volume>150</volume>
:
<fpage>162</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="pmid">8469415</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Ptito1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Schneider</surname>
<given-names>FC</given-names>
</name>
,
<name>
<surname>Paulson</surname>
<given-names>OB</given-names>
</name>
,
<name>
<surname>Kupers</surname>
<given-names>R</given-names>
</name>
(
<year>2008</year>
)
<article-title>Alterations of the visual pathways in congenital blindness</article-title>
.
<source>Exp Brain Res</source>
<volume>187</volume>
:
<fpage>41</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="pmid">18224306</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Noppeney1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Noppeney</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Friston</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Ashburner</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Frackowiak</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Price</surname>
<given-names>CJ</given-names>
</name>
(
<year>2005</year>
)
<article-title>Early visual deprivation induces structural plasticity in gray and white matter</article-title>
.
<source>Curr Biol</source>
<volume>15</volume>
:
<fpage>R488</fpage>
<lpage>490</lpage>
<pub-id pub-id-type="pmid">16005276</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Pan1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pan</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>CX</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults: A voxel-based morphometry magnetic resonance imaging study</article-title>
.
<source>Neuroimage</source>
<volume>37</volume>
:
<fpage>212</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="pmid">17560797</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Shimony1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shimony</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Burton</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Epstein</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>McLaren</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>SW</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Diffusion tensor imaging reveals white matter reorganization in early blind humans</article-title>
.
<source>Cereb Cortex</source>
<volume>16</volume>
:
<fpage>1653</fpage>
<lpage>1661</lpage>
<pub-id pub-id-type="pmid">16400157</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Shu1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shu</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>T</given-names>
</name>
(
<year>2009</year>
)
<article-title>Abnormal diffusion of cerebral white matter in early blindness</article-title>
.
<source>Hum Brain Mapp</source>
<volume>30</volume>
:
<fpage>220</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">18072278</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Liu2">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Liang</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Tian</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Whole brain functional connectivity in the early blind</article-title>
.
<source>Brain</source>
<volume>130</volume>
:
<fpage>2085</fpage>
<lpage>2096</lpage>
<pub-id pub-id-type="pmid">17533167</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bavelier1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bavelier</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Neville</surname>
<given-names>HJ</given-names>
</name>
(
<year>2002</year>
)
<article-title>Cross-modal plasticity: where and how?</article-title>
<source>Nat Rev Neurosci</source>
<volume>3</volume>
:
<fpage>443</fpage>
<lpage>452</lpage>
<pub-id pub-id-type="pmid">12042879</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Fiehler1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fiehler</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Rosler</surname>
<given-names>F</given-names>
</name>
(
<year>2010</year>
)
<article-title>Plasticity of multisensory dorsal stream functions: evidence from congenitally blind and sighted adults</article-title>
.
<source>Restor Neurol Neurosci</source>
<volume>28</volume>
:
<fpage>193</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="pmid">20404408</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Amedi1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Jacobson</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Hendler</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Malach</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
(
<year>2002</year>
)
<article-title>Convergence of visual and tactile shape processing in the human lateral occipital complex</article-title>
.
<source>Cereb Cortex</source>
<volume>12</volume>
:
<fpage>1202</fpage>
<lpage>1212</lpage>
<pub-id pub-id-type="pmid">12379608</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-James1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>James</surname>
<given-names>TW</given-names>
</name>
,
<name>
<surname>Humphrey</surname>
<given-names>GK</given-names>
</name>
,
<name>
<surname>Gati</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Servos</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>RS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Haptic study of three-dimensional objects activates extrastriate visual areas</article-title>
.
<source>Neuropsychologia</source>
<volume>40</volume>
:
<fpage>1706</fpage>
<lpage>1714</lpage>
<pub-id pub-id-type="pmid">11992658</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kim1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Zatorre</surname>
<given-names>RJ</given-names>
</name>
(
<year>2011</year>
)
<article-title>Tactile-auditory shape learning engages the lateral occipital complex</article-title>
.
<source>J Neurosci</source>
<volume>31</volume>
:
<fpage>7848</fpage>
<lpage>7856</lpage>
<pub-id pub-id-type="pmid">21613498</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Amedi2">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Malach</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Hendler</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Peled</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
(
<year>2001</year>
)
<article-title>Visuo-haptic object-related activation in the ventral visual pathway</article-title>
.
<source>Nat Neurosci</source>
<volume>4</volume>
:
<fpage>324</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="pmid">11224551</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Pietrini1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pietrini</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Furey</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Ricciardi</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Gobbini</surname>
<given-names>MI</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>WH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Beyond sensory images: Object-based representation in the human ventral pathway</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>101</volume>
:
<fpage>5658</fpage>
<lpage>5663</lpage>
<pub-id pub-id-type="pmid">15064396</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kassuba1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kassuba</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Klinge</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Holig</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Menz</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>The left fusiform gyrus hosts trisensory representations of manipulable objects</article-title>
.
<source>Neuroimage</source>
<volume>56</volume>
:
<fpage>1566</fpage>
<lpage>1577</lpage>
<pub-id pub-id-type="pmid">21334444</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Ricciardi1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ricciardi</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Vanello</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Sani</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Gentili</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Scilingo</surname>
<given-names>EP</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>The effect of visual experience on the development of functional architecture in hMT+</article-title>
.
<source>Cereb Cortex</source>
<volume>17</volume>
:
<fpage>2933</fpage>
<lpage>2939</lpage>
<pub-id pub-id-type="pmid">17372275</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Poirier1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Poirier</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Collignon</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Devolder</surname>
<given-names>AG</given-names>
</name>
,
<name>
<surname>Renier</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Vanlierde</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Specific activation of the V5 brain area by auditory motion processing: an fMRI study</article-title>
.
<source>Brain Res Cogn Brain Res</source>
<volume>25</volume>
:
<fpage>650</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="pmid">16298112</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Renier1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Renier</surname>
<given-names>LA</given-names>
</name>
,
<name>
<surname>Anurova</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>De Volder</surname>
<given-names>AG</given-names>
</name>
,
<name>
<surname>Carlson</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>VanMeter</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind</article-title>
.
<source>Neuron</source>
<volume>68</volume>
:
<fpage>138</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="pmid">20920797</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Collignon1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Collignon</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Vandewalle</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Voss</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Albouy</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Charbonneau</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>108</volume>
:
<fpage>4435</fpage>
<lpage>4440</lpage>
<pub-id pub-id-type="pmid">21368198</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Fiehler2">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fiehler</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bien</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Roder</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Rosler</surname>
<given-names>F</given-names>
</name>
(
<year>2009</year>
)
<article-title>The human dorsal action control system develops in the absence of vision</article-title>
.
<source>Cereb Cortex</source>
<volume>19</volume>
:
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">18448452</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Reich1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reich</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Szwed</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
(
<year>2011</year>
)
<article-title>A ventral visual stream reading center independent of visual experience</article-title>
.
<source>Curr Biol</source>
<volume>21</volume>
:
<fpage>363</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="pmid">21333539</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Amedi3">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Raz</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Azulay</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Malach</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
(
<year>2010</year>
)
<article-title>Cortical activity during tactile exploration of objects in blind and sighted humans</article-title>
.
<source>Restor Neurol Neurosci</source>
<volume>28</volume>
:
<fpage>143</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="pmid">20404404</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Peltier1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Peltier</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Stilla</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Mariola</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>LaConte</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception</article-title>
.
<source>Neuropsychologia</source>
<volume>45</volume>
:
<fpage>476</fpage>
<lpage>483</lpage>
<pub-id pub-id-type="pmid">16616940</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Wolbers1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolbers</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Zahorik</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Giudice</surname>
<given-names>NA</given-names>
</name>
(
<year>2011</year>
)
<article-title>Decoding the direction of auditory motion in blind humans</article-title>
.
<source>Neuroimage</source>
<volume>56</volume>
:
<fpage>681</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="pmid">20451630</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Matteau1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matteau</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Kupers</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ricciardi</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Pietrini</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
(
<year>2010</year>
)
<article-title>Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals</article-title>
.
<source>Brain Res Bull</source>
<volume>82</volume>
:
<fpage>264</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="pmid">20466041</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Ptito2">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Matteau</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Gjedde</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kupers</surname>
<given-names>R</given-names>
</name>
(
<year>2009</year>
)
<article-title>Recruitment of the middle temporal area by tactile motion in congenital blindness</article-title>
.
<source>Neuroreport</source>
<volume>20</volume>
:
<fpage>543</fpage>
<lpage>547</lpage>
<pub-id pub-id-type="pmid">19240660</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Poirier2">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Poirier</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Collignon</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Scheiber</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Renier</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Vanlierde</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Auditory motion perception activates visual motion areas in early blind subjects</article-title>
.
<source>Neuroimage</source>
<volume>31</volume>
:
<fpage>279</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="pmid">16443376</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-StriemAmit1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Striem-Amit</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Dakwar</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Reich</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
(
<year>2012</year>
)
<article-title>The large-scale organization of “visual” streams emerges without visual experience</article-title>
.
<source>Cereb Cortex</source>
<volume>22</volume>
:
<fpage>1698</fpage>
<lpage>1709</lpage>
<pub-id pub-id-type="pmid">21940707</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Amedi4">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Stern</surname>
<given-names>WM</given-names>
</name>
,
<name>
<surname>Camprodon</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Bermpohl</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Merabet</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex</article-title>
.
<source>Nat Neurosci</source>
<volume>10</volume>
:
<fpage>687</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="pmid">17515898</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Renier2">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Renier</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>De Volder</surname>
<given-names>AG</given-names>
</name>
(
<year>2010</year>
)
<article-title>Vision substitution and depth perception: early blind subjects experience visual perspective through their ears</article-title>
.
<source>Disabil Rehabil Assist Technol</source>
<volume>5</volume>
:
<fpage>175</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="pmid">20214472</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kupers1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kupers</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Chebat</surname>
<given-names>DR</given-names>
</name>
,
<name>
<surname>Madsen</surname>
<given-names>KH</given-names>
</name>
,
<name>
<surname>Paulson</surname>
<given-names>OB</given-names>
</name>
,
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
(
<year>2010</year>
)
<article-title>Neural correlates of virtual route recognition in congenital blindness</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>107</volume>
:
<fpage>12716</fpage>
<lpage>12721</lpage>
<pub-id pub-id-type="pmid">20616025</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Auvray1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Auvray</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hanneton</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>O'Regan</surname>
<given-names>JK</given-names>
</name>
(
<year>2007</year>
)
<article-title>Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with ‘the vOICe’</article-title>
.
<source>Perception</source>
<volume>36</volume>
:
<fpage>416</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="pmid">17455756</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Proulx1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Proulx</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Stoerig</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ludowig</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Knoll</surname>
<given-names>I</given-names>
</name>
(
<year>2008</year>
)
<article-title>Seeing ‘where’ through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution</article-title>
.
<source>PLoS ONE</source>
<volume>3</volume>
:
<fpage>e1840</fpage>
<pub-id pub-id-type="pmid">18364998</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kim2">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Zatorre</surname>
<given-names>RJ</given-names>
</name>
(
<year>2008</year>
)
<article-title>Generalized learning of visual-to-auditory substitution in sighted individuals</article-title>
.
<source>Brain Res</source>
<volume>1242</volume>
:
<fpage>263</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="pmid">18602373</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kupers2">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kupers</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pietrini</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ricciardi</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
(
<year>2011</year>
)
<article-title>The nature of consciousness in the visually deprived brain</article-title>
.
<source>Front Psychol</source>
<volume>2</volume>
:
<fpage>19</fpage>
<pub-id pub-id-type="pmid">21713178</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Reich2">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reich</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Maidenbaum</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
(
<year>2012</year>
)
<article-title>The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches</article-title>
.
<source>Curr Opin Neurol</source>
<volume>25</volume>
:
<fpage>86</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">22157107</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Driver1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Driver</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Noesselt</surname>
<given-names>T</given-names>
</name>
(
<year>2008</year>
)
<article-title>Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments</article-title>
.
<source>Neuron</source>
<volume>57</volume>
:
<fpage>11</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">18184561</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Falchier1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Falchier</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Clavagnier</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Barone</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Kennedy</surname>
<given-names>H</given-names>
</name>
(
<year>2002</year>
)
<article-title>Anatomical evidence of multimodal integration in primate striate cortex</article-title>
.
<source>J Neurosci</source>
<volume>22</volume>
:
<fpage>5749</fpage>
<lpage>5759</lpage>
<pub-id pub-id-type="pmid">12097528</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Mahon1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mahon</surname>
<given-names>BZ</given-names>
</name>
,
<name>
<surname>Anzellotti</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Schwarzbach</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zampini</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Caramazza</surname>
<given-names>A</given-names>
</name>
(
<year>2009</year>
)
<article-title>Category-specific organization in the human brain does not require visual experience</article-title>
.
<source>Neuron</source>
<volume>63</volume>
:
<fpage>397</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="pmid">19679078</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Dale1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dale</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Fischl</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sereno</surname>
<given-names>MI</given-names>
</name>
(
<year>1999</year>
)
<article-title>Cortical surface-based analysis. I. Segmentation and surface reconstruction</article-title>
.
<source>Neuroimage</source>
<volume>9</volume>
:
<fpage>179</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="pmid">9931268</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Fischl1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fischl</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sereno</surname>
<given-names>MI</given-names>
</name>
,
<name>
<surname>Dale</surname>
<given-names>AM</given-names>
</name>
(
<year>1999</year>
)
<article-title>Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system</article-title>
.
<source>Neuroimage</source>
<volume>9</volume>
:
<fpage>195</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="pmid">9931269</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Talairach1">
<label>49</label>
<mixed-citation publication-type="other">Talairach J, Tournoux P (1988) Co-Planar Stereotaxic Atlas of the Human Brain: Georg Thieme Verlag.</mixed-citation>
</ref>
<ref id="pone.0053784-Segonne1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Segonne</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Dale</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Busa</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Glessner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Salat</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>A hybrid approach to the skull stripping problem in MRI</article-title>
.
<source>Neuroimage</source>
<volume>22</volume>
:
<fpage>1060</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="pmid">15219578</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Fischl2">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fischl</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Dale</surname>
<given-names>AM</given-names>
</name>
(
<year>2000</year>
)
<article-title>Measuring the thickness of the human cerebral cortex from magnetic resonance images</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>97</volume>
:
<fpage>11050</fpage>
<lpage>11055</lpage>
<pub-id pub-id-type="pmid">10984517</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Fischl3">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fischl</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sereno</surname>
<given-names>MI</given-names>
</name>
,
<name>
<surname>Tootell</surname>
<given-names>RB</given-names>
</name>
,
<name>
<surname>Dale</surname>
<given-names>AM</given-names>
</name>
(
<year>1999</year>
)
<article-title>High-resolution intersubject averaging and a coordinate system for the cortical surface</article-title>
.
<source>Hum Brain Mapp</source>
<volume>8</volume>
:
<fpage>272</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="pmid">10619420</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-VanEssen1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Van Essen</surname>
<given-names>DC</given-names>
</name>
(
<year>2005</year>
)
<article-title>A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex</article-title>
.
<source>Neuroimage</source>
<volume>28</volume>
:
<fpage>635</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="pmid">16172003</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Lepore1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lepore</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Voss</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Lepore</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Chou</surname>
<given-names>YY</given-names>
</name>
,
<name>
<surname>Fortin</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Brain structure changes visualized in early- and late-onset blind subjects</article-title>
.
<source>Neuroimage</source>
<volume>49</volume>
:
<fpage>134</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">19643183</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Chechik1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chechik</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Meilijson</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Ruppin</surname>
<given-names>E</given-names>
</name>
(
<year>1999</year>
)
<article-title>Neuronal regulation: A mechanism for synaptic pruning during brain maturation</article-title>
.
<source>Neural Comput</source>
<volume>11</volume>
:
<fpage>2061</fpage>
<lpage>2080</lpage>
<pub-id pub-id-type="pmid">10578044</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bourgeois1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bourgeois</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Jastreboff</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Rakic</surname>
<given-names>P</given-names>
</name>
(
<year>1989</year>
)
<article-title>Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>86</volume>
:
<fpage>4297</fpage>
<lpage>4301</lpage>
<pub-id pub-id-type="pmid">2726773</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Karlen1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Karlen</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Kahn</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Krubitzer</surname>
<given-names>L</given-names>
</name>
(
<year>2006</year>
)
<article-title>Early blindness results in abnormal corticocortical and thalamocortical connections</article-title>
.
<source>Neuroscience</source>
<volume>142</volume>
:
<fpage>843</fpage>
<lpage>858</lpage>
<pub-id pub-id-type="pmid">16934941</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kupers3">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kupers</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Fumal</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>de Noordhout</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Gjedde</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Schoenen</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>103</volume>
:
<fpage>13256</fpage>
<lpage>13260</lpage>
<pub-id pub-id-type="pmid">16916936</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Rehkamper1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rehkamper</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Necker</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Nevo</surname>
<given-names>E</given-names>
</name>
(
<year>1994</year>
)
<article-title>Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: an architectonic and electrophysiologically controlled tracing study</article-title>
.
<source>J Comp Neurol</source>
<volume>347</volume>
:
<fpage>570</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="pmid">7529266</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Callaway1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Callaway</surname>
<given-names>EM</given-names>
</name>
,
<name>
<surname>Katz</surname>
<given-names>LC</given-names>
</name>
(
<year>1991</year>
)
<article-title>Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>88</volume>
:
<fpage>745</fpage>
<lpage>749</lpage>
<pub-id pub-id-type="pmid">1704130</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Sur1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sur</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Leamey</surname>
<given-names>CA</given-names>
</name>
(
<year>2001</year>
)
<article-title>Development and plasticity of cortical areas and networks</article-title>
.
<source>Nat Rev Neurosci</source>
<volume>2</volume>
:
<fpage>251</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="pmid">11283748</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Wittenberg1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wittenberg</surname>
<given-names>GF</given-names>
</name>
,
<name>
<surname>Werhahn</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Wassermann</surname>
<given-names>EM</given-names>
</name>
,
<name>
<surname>Herscovitch</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>LG</given-names>
</name>
(
<year>2004</year>
)
<article-title>Functional connectivity between somatosensory and visual cortex in early blind humans</article-title>
.
<source>Eur J Neurosci</source>
<volume>20</volume>
:
<fpage>1923</fpage>
<lpage>1927</lpage>
<pub-id pub-id-type="pmid">15380014</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Klinge1">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Klinge</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Eippert</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Roder</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Buchel</surname>
<given-names>C</given-names>
</name>
(
<year>2010</year>
)
<article-title>Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind</article-title>
.
<source>J Neurosci</source>
<volume>30</volume>
:
<fpage>12798</fpage>
<lpage>12805</lpage>
<pub-id pub-id-type="pmid">20861384</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Yu1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Altered functional connectivity of primary visual cortex in early blindness</article-title>
.
<source>Hum Brain Mapp</source>
<volume>29</volume>
:
<fpage>533</fpage>
<lpage>543</lpage>
<pub-id pub-id-type="pmid">17525980</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bedny1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bedny</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Pascual-Leone</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Dodell-Feder</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Fedorenko</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Saxe</surname>
<given-names>R</given-names>
</name>
(
<year>2011</year>
)
<article-title>Language processing in the occipital cortex of congenitally blind adults</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>108</volume>
:
<fpage>4429</fpage>
<lpage>4434</lpage>
<pub-id pub-id-type="pmid">21368161</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-He1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Vincent</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Epstein</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Shulman</surname>
<given-names>GL</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect</article-title>
.
<source>Neuron</source>
<volume>53</volume>
:
<fpage>905</fpage>
<lpage>918</lpage>
<pub-id pub-id-type="pmid">17359924</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-NormanHaignere1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Norman-Haignere</surname>
<given-names>SV</given-names>
</name>
,
<name>
<surname>McCarthy</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Chun</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Turk-Browne</surname>
<given-names>NB</given-names>
</name>
(
<year>2012</year>
)
<article-title>Category-selective background connectivity in ventral visual cortex</article-title>
.
<source>Cereb Cortex</source>
<volume>22</volume>
:
<fpage>391</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="pmid">21670097</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Matsui1">
<label>68</label>
<mixed-citation publication-type="other">Matsui T, Tamura K, Koyano KW, Takeuchi D, Adachi Y,
<etal>et al</etal>
. (2011) Direct Comparison of Spontaneous Functional Connectivity and Effective Connectivity Measured by Intracortical Microstimulation: An fMRI Study in Macaque Monkeys. Cereb Cortex.</mixed-citation>
</ref>
<ref id="pone.0053784-Bedny2">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bedny</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Konkle</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Pelphrey</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Saxe</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pascual-Leone</surname>
<given-names>A</given-names>
</name>
(
<year>2010</year>
)
<article-title>Sensitive period for a multimodal response in human visual motion area MT/MST</article-title>
.
<source>Curr Biol</source>
<volume>20</volume>
:
<fpage>1900</fpage>
<lpage>1906</lpage>
<pub-id pub-id-type="pmid">20970337</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Greicius1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Greicius</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Supekar</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Dougherty</surname>
<given-names>RF</given-names>
</name>
(
<year>2009</year>
)
<article-title>Resting-state functional connectivity reflects structural connectivity in the default mode network</article-title>
.
<source>Cereb Cortex</source>
<volume>19</volume>
:
<fpage>72</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">18403396</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Honey1">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Honey</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Sporns</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Cammoun</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Gigandet</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Thiran</surname>
<given-names>JP</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Predicting human resting-state functional connectivity from structural connectivity</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>106</volume>
:
<fpage>2035</fpage>
<lpage>2040</lpage>
<pub-id pub-id-type="pmid">19188601</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Conturo1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Conturo</surname>
<given-names>TE</given-names>
</name>
,
<name>
<surname>Lori</surname>
<given-names>NF</given-names>
</name>
,
<name>
<surname>Cull</surname>
<given-names>TS</given-names>
</name>
,
<name>
<surname>Akbudak</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Tracking neuronal fiber pathways in the living human brain</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>96</volume>
:
<fpage>10422</fpage>
<lpage>10427</lpage>
<pub-id pub-id-type="pmid">10468624</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bizley1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bizley</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Nodal</surname>
<given-names>FR</given-names>
</name>
,
<name>
<surname>Bajo</surname>
<given-names>VM</given-names>
</name>
,
<name>
<surname>Nelken</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>King</surname>
<given-names>AJ</given-names>
</name>
(
<year>2007</year>
)
<article-title>Physiological and anatomical evidence for multisensory interactions in auditory cortex</article-title>
.
<source>Cereb Cortex</source>
<volume>17</volume>
:
<fpage>2172</fpage>
<lpage>2189</lpage>
<pub-id pub-id-type="pmid">17135481</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Lewis1">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lewis</surname>
<given-names>TL</given-names>
</name>
,
<name>
<surname>Maurer</surname>
<given-names>D</given-names>
</name>
(
<year>2005</year>
)
<article-title>Multiple sensitive periods in human visual development: evidence from visually deprived children</article-title>
.
<source>Dev Psychobiol</source>
<volume>46</volume>
:
<fpage>163</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="pmid">15772974</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kiorpes1">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kiorpes</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Price</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Hall-Haro</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Anthony Movshon</surname>
<given-names>J</given-names>
</name>
(
<year>2012</year>
)
<article-title>Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina)</article-title>
.
<source>Vision Res</source>
<volume>63</volume>
:
<fpage>34</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">22580018</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kovacs1">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kovacs</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Kozma</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Feher</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Benedek</surname>
<given-names>G</given-names>
</name>
(
<year>1999</year>
)
<article-title>Late maturation of visual spatial integration in humans</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>96</volume>
:
<fpage>12204</fpage>
<lpage>12209</lpage>
<pub-id pub-id-type="pmid">10518600</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kovacs2">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kovacs</surname>
<given-names>I</given-names>
</name>
(
<year>2000</year>
)
<article-title>Human development of perceptual organization</article-title>
.
<source>Vision Res</source>
<volume>40</volume>
:
<fpage>1301</fpage>
<lpage>1310</lpage>
<pub-id pub-id-type="pmid">10788641</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Kiorpes2">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kiorpes</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Bassin</surname>
<given-names>SA</given-names>
</name>
(
<year>2003</year>
)
<article-title>Development of contour integration in macaque monkeys</article-title>
.
<source>Vis Neurosci</source>
<volume>20</volume>
:
<fpage>567</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="pmid">14977335</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Distler1">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Distler</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Bachevalier</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kennedy</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Mishkin</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ungerleider</surname>
<given-names>LG</given-names>
</name>
(
<year>1996</year>
)
<article-title>Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study</article-title>
.
<source>Cereb Cortex</source>
<volume>6</volume>
:
<fpage>184</fpage>
<lpage>195</lpage>
<pub-id pub-id-type="pmid">8670649</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bourne1">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bourne</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Rosa</surname>
<given-names>MG</given-names>
</name>
(
<year>2006</year>
)
<article-title>Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT)</article-title>
.
<source>Cereb Cortex</source>
<volume>16</volume>
:
<fpage>405</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="pmid">15944371</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-WattamBell1">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wattam-Bell</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Birtles</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Nystrom</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>von Hofsten</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Rosander</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Reorganization of global form and motion processing during human visual development</article-title>
.
<source>Curr Biol</source>
<volume>20</volume>
:
<fpage>411</fpage>
<lpage>415</lpage>
<pub-id pub-id-type="pmid">20171101</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Rodman1">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodman</surname>
<given-names>HR</given-names>
</name>
,
<name>
<surname>Scalaidhe</surname>
<given-names>SP</given-names>
</name>
,
<name>
<surname>Gross</surname>
<given-names>CG</given-names>
</name>
(
<year>1993</year>
)
<article-title>Response properties of neurons in temporal cortical visual areas of infant monkeys</article-title>
.
<source>J Neurophysiol</source>
<volume>70</volume>
:
<fpage>1115</fpage>
<lpage>1136</lpage>
<pub-id pub-id-type="pmid">8229162</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bronchti1">
<label>83</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bronchti</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Rado</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Terkel</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Wollberg</surname>
<given-names>Z</given-names>
</name>
(
<year>1991</year>
)
<article-title>Retinal projections in the blind mole rat: a WGA-HRP tracing study of a natural degeneration</article-title>
.
<source>Brain Res Dev Brain Res</source>
<volume>58</volume>
:
<fpage>159</fpage>
<lpage>170</lpage>
</mixed-citation>
</ref>
<ref id="pone.0053784-Bock1">
<label>84</label>
<mixed-citation publication-type="other">Bock AS, Kroenke CD, Taber EN, Olavarria JF (2011) Retinal input influences the size and corticocortical connectivity of visual cortex during postnatal development in the ferret. J Comp Neurol.</mixed-citation>
</ref>
<ref id="pone.0053784-Werner1">
<label>85</label>
<mixed-citation publication-type="journal">
<name>
<surname>Werner</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Noppeney</surname>
<given-names>U</given-names>
</name>
(
<year>2010</year>
)
<article-title>Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization</article-title>
.
<source>J Neurosci</source>
<volume>30</volume>
:
<fpage>2662</fpage>
<lpage>2675</lpage>
<pub-id pub-id-type="pmid">20164350</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-denOuden1">
<label>86</label>
<mixed-citation publication-type="journal">
<name>
<surname>den Ouden</surname>
<given-names>HE</given-names>
</name>
,
<name>
<surname>Friston</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Daw</surname>
<given-names>ND</given-names>
</name>
,
<name>
<surname>McIntosh</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Stephan</surname>
<given-names>KE</given-names>
</name>
(
<year>2009</year>
)
<article-title>A dual role for prediction error in associative learning</article-title>
.
<source>Cereb Cortex</source>
<volume>19</volume>
:
<fpage>1175</fpage>
<lpage>1185</lpage>
<pub-id pub-id-type="pmid">18820290</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Eckert1">
<label>87</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eckert</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Kamdar</surname>
<given-names>NV</given-names>
</name>
,
<name>
<surname>Chang</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Beckmann</surname>
<given-names>CF</given-names>
</name>
,
<name>
<surname>Greicius</surname>
<given-names>MD</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>A cross-modal system linking primary auditory and visual cortices: evidence from intrinsic fMRI connectivity analysis</article-title>
.
<source>Hum Brain Mapp</source>
<volume>29</volume>
:
<fpage>848</fpage>
<lpage>857</lpage>
<pub-id pub-id-type="pmid">18412133</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Collignon2">
<label>88</label>
<mixed-citation publication-type="journal">
<name>
<surname>Collignon</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Lassonde</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lepore</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Bastien</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Veraart</surname>
<given-names>C</given-names>
</name>
(
<year>2007</year>
)
<article-title>Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects</article-title>
.
<source>Cereb Cortex</source>
<volume>17</volume>
:
<fpage>457</fpage>
<lpage>465</lpage>
<pub-id pub-id-type="pmid">16581983</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Ptito3">
<label>89</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ptito</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fumal</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>de Noordhout</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Schoenen</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Gjedde</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers</article-title>
.
<source>Exp Brain Res</source>
<volume>184</volume>
:
<fpage>193</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="pmid">17717652</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Innocenti1">
<label>90</label>
<mixed-citation publication-type="journal">
<name>
<surname>Innocenti</surname>
<given-names>GM</given-names>
</name>
(
<year>1995</year>
)
<article-title>Exuberant development of connections, and its possible permissive role in cortical evolution</article-title>
.
<source>Trends Neurosci</source>
<volume>18</volume>
:
<fpage>397</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="pmid">7482805</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Rockland1">
<label>91</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rockland</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Ojima</surname>
<given-names>H</given-names>
</name>
(
<year>2003</year>
)
<article-title>Multisensory convergence in calcarine visual areas in macaque monkey</article-title>
.
<source>Int J Psychophysiol</source>
<volume>50</volume>
:
<fpage>19</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">14511833</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Fujii1">
<label>92</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fujii</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Tanabe</surname>
<given-names>HC</given-names>
</name>
,
<name>
<surname>Kochiyama</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Sadato</surname>
<given-names>N</given-names>
</name>
(
<year>2009</year>
)
<article-title>An investigation of cross-modal plasticity of effective connectivity in the blind by dynamic causal modeling of functional MRI data</article-title>
.
<source>Neurosci Res</source>
<volume>65</volume>
:
<fpage>175</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="pmid">19580827</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Amedi5">
<label>93</label>
<mixed-citation publication-type="journal">
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Raz</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Pianka</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Malach</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
(
<year>2003</year>
)
<article-title>Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind</article-title>
.
<source>Nat Neurosci</source>
<volume>6</volume>
:
<fpage>758</fpage>
<lpage>766</lpage>
<pub-id pub-id-type="pmid">12808458</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Raz1">
<label>94</label>
<mixed-citation publication-type="journal">
<name>
<surname>Raz</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
(
<year>2005</year>
)
<article-title>V1 activation in congenitally blind humans is associated with episodic retrieval</article-title>
.
<source>Cereb Cortex</source>
<volume>15</volume>
:
<fpage>1459</fpage>
<lpage>1468</lpage>
<pub-id pub-id-type="pmid">15647525</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Burton1">
<label>95</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burton</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Diamond</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>McDermott</surname>
<given-names>KB</given-names>
</name>
(
<year>2003</year>
)
<article-title>Dissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people</article-title>
.
<source>J Neurophysiol</source>
<volume>90</volume>
:
<fpage>1965</fpage>
<lpage>1982</lpage>
<pub-id pub-id-type="pmid">12789013</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Burton2">
<label>96</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burton</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Conturo</surname>
<given-names>TE</given-names>
</name>
,
<name>
<surname>Akbudak</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Ollinger</surname>
<given-names>JM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Adaptive changes in early and late blind: a fMRI study of Braille reading</article-title>
.
<source>J Neurophysiol</source>
<volume>87</volume>
:
<fpage>589</fpage>
<lpage>607</lpage>
<pub-id pub-id-type="pmid">11784773</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Burton3">
<label>97</label>
<mixed-citation publication-type="journal">
<name>
<surname>Burton</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Diamond</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Raichle</surname>
<given-names>ME</given-names>
</name>
(
<year>2002</year>
)
<article-title>Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns</article-title>
.
<source>J Neurophysiol</source>
<volume>88</volume>
:
<fpage>3359</fpage>
<lpage>3371</lpage>
<pub-id pub-id-type="pmid">12466452</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0053784-Buchel1">
<label>98</label>
<mixed-citation publication-type="journal">
<name>
<surname>Buchel</surname>
<given-names>C</given-names>
</name>
(
<year>2003</year>
)
<article-title>Cortical hierarchy turned on its head</article-title>
.
<source>Nat Neurosci</source>
<volume>6</volume>
:
<fpage>657</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="pmid">12830152</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002240 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 002240 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3538632
   |texte=   The Development of Visual Areas Depends Differently on Visual Experience
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:23308283" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024