Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis

Identifieur interne : 001132 ( Pmc/Curation ); précédent : 001131; suivant : 001133

Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis

Auteurs : Jason P. Halloran ; Ahmet Erdemir

Source :

RBID : PMC:3150601

Abstract

Simulation-based prediction of specimen-specific biomechanical behavior commonly requires inverse analysis using geometrically consistent finite element (FE) models. Optimization drives such analyses but previous studies have highlighted a large computational cost dictated by iterative use of nonlinear FE models. The goal of this study was to evaluate the performance of a local regression-based adaptive surrogate modeling approach to decrease computational cost for both global and local optimization approaches using an inverse FE application. Nonlinear elastic material parameters for patient-specific heel-pad tissue were found, both with and without the surrogate model. Surrogate prediction replaced a FE simulation using local regression of previous simulations when the corresponding error estimate was less than a given tolerance. Performance depended on optimization type and tolerance value. The surrogate reduced local optimization expense up to 68%, but achieved accurate results for only 1 of 20 initial conditions. Conversely, up to a tolerance value of 20 N2, global optimization with the surrogate yielded consistent parameter predictions with a concurrent decrease in computational cost (up to 77%). However, the local optimization method without the surrogate, although sensitive to the initial conditions, was still on average seven times faster than the global approach. Our results help establish guide-lines for setting acceptable tolerance values while using an adaptive surrogate model for inverse FE analysis. Most important, the study demonstrates the benefits of a surrogate modeling approach for intensive FE-based iterative analysis.


Url:
DOI: 10.1007/s10439-011-0317-2
PubMed: 21544674
PubMed Central: 3150601

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3150601

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis</title>
<author>
<name sortKey="Halloran, Jason P" sort="Halloran, Jason P" uniqKey="Halloran J" first="Jason P." last="Halloran">Jason P. Halloran</name>
</author>
<author>
<name sortKey="Erdemir, Ahmet" sort="Erdemir, Ahmet" uniqKey="Erdemir A" first="Ahmet" last="Erdemir">Ahmet Erdemir</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21544674</idno>
<idno type="pmc">3150601</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150601</idno>
<idno type="RBID">PMC:3150601</idno>
<idno type="doi">10.1007/s10439-011-0317-2</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001132</idno>
<idno type="wicri:Area/Pmc/Curation">001132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis</title>
<author>
<name sortKey="Halloran, Jason P" sort="Halloran, Jason P" uniqKey="Halloran J" first="Jason P." last="Halloran">Jason P. Halloran</name>
</author>
<author>
<name sortKey="Erdemir, Ahmet" sort="Erdemir, Ahmet" uniqKey="Erdemir A" first="Ahmet" last="Erdemir">Ahmet Erdemir</name>
</author>
</analytic>
<series>
<title level="j">Annals of biomedical engineering</title>
<idno type="ISSN">0090-6964</idno>
<idno type="eISSN">1521-6047</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Simulation-based prediction of specimen-specific biomechanical behavior commonly requires inverse analysis using geometrically consistent finite element (FE) models. Optimization drives such analyses but previous studies have highlighted a large computational cost dictated by iterative use of nonlinear FE models. The goal of this study was to evaluate the performance of a local regression-based adaptive surrogate modeling approach to decrease computational cost for both global and local optimization approaches using an inverse FE application. Nonlinear elastic material parameters for patient-specific heel-pad tissue were found, both with and without the surrogate model. Surrogate prediction replaced a FE simulation using local regression of previous simulations when the corresponding error estimate was less than a given tolerance. Performance depended on optimization type and tolerance value. The surrogate reduced local optimization expense up to 68%, but achieved accurate results for only 1 of 20 initial conditions. Conversely, up to a tolerance value of 20 N
<sup>2</sup>
, global optimization with the surrogate yielded consistent parameter predictions with a concurrent decrease in computational cost (up to 77%). However, the local optimization method without the surrogate, although sensitive to the initial conditions, was still on average seven times faster than the global approach. Our results help establish guide-lines for setting acceptable tolerance values while using an adaptive surrogate model for inverse FE analysis. Most important, the study demonstrates the benefits of a surrogate modeling approach for intensive FE-based iterative analysis.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">0361512</journal-id>
<journal-id journal-id-type="pubmed-jr-id">561</journal-id>
<journal-id journal-id-type="nlm-ta">Ann Biomed Eng</journal-id>
<journal-title-group>
<journal-title>Annals of biomedical engineering</journal-title>
</journal-title-group>
<issn pub-type="ppub">0090-6964</issn>
<issn pub-type="epub">1521-6047</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21544674</article-id>
<article-id pub-id-type="pmc">3150601</article-id>
<article-id pub-id-type="doi">10.1007/s10439-011-0317-2</article-id>
<article-id pub-id-type="manuscript">NIHMS300188</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Halloran</surname>
<given-names>Jason P.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Erdemir</surname>
<given-names>Ahmet</given-names>
</name>
</contrib>
<aff id="A1">Computational Biomodeling (CoBi) Core and Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Address correspondence to Jason P. Halloran, Computational Biomodeling (CoBi) Core and Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
<email>hallorj@ccf.org</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>10</day>
<month>6</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>5</day>
<month>5</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>9</month>
<year>2012</year>
</pub-date>
<volume>39</volume>
<issue>9</issue>
<fpage>2388</fpage>
<lpage>2397</lpage>
<permissions>
<copyright-statement>© 2011 Biomedical Engineering Society</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<abstract>
<p id="P1">Simulation-based prediction of specimen-specific biomechanical behavior commonly requires inverse analysis using geometrically consistent finite element (FE) models. Optimization drives such analyses but previous studies have highlighted a large computational cost dictated by iterative use of nonlinear FE models. The goal of this study was to evaluate the performance of a local regression-based adaptive surrogate modeling approach to decrease computational cost for both global and local optimization approaches using an inverse FE application. Nonlinear elastic material parameters for patient-specific heel-pad tissue were found, both with and without the surrogate model. Surrogate prediction replaced a FE simulation using local regression of previous simulations when the corresponding error estimate was less than a given tolerance. Performance depended on optimization type and tolerance value. The surrogate reduced local optimization expense up to 68%, but achieved accurate results for only 1 of 20 initial conditions. Conversely, up to a tolerance value of 20 N
<sup>2</sup>
, global optimization with the surrogate yielded consistent parameter predictions with a concurrent decrease in computational cost (up to 77%). However, the local optimization method without the surrogate, although sensitive to the initial conditions, was still on average seven times faster than the global approach. Our results help establish guide-lines for setting acceptable tolerance values while using an adaptive surrogate model for inverse FE analysis. Most important, the study demonstrates the benefits of a surrogate modeling approach for intensive FE-based iterative analysis.</p>
</abstract>
<kwd-group>
<kwd>Finite element modeling</kwd>
<kwd>Computer simulation</kwd>
<kwd>Tissue mechanics</kwd>
<kwd>Plantar tissue</kwd>
<kwd>Inverse modeling</kwd>
<kwd>Optimization</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source country="United States">National Institute of Biomedical Imaging and Bioengineering : NIBIB</funding-source>
<award-id>R01 EB006735-01 || EB</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3150601
   |texte=   Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:21544674" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024