Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS

Identifieur interne : 000846 ( Pmc/Curation ); précédent : 000845; suivant : 000847

Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS

Auteurs : Peter Feys [Belgique] ; Karin Coninx [Belgique] ; Lore Kerkhofs [Belgique] ; Tom De Weyer [Belgique] ; Veronik Truyens [Belgique] ; Anneleen Maris [Belgique] ; Ilse Lamers [Belgique]

Source :

RBID : PMC:4511982

Abstract

Background

Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS.

Aim

To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only.

Methods

Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5–8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied.

Results

PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction.

Conclusion

Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper limb dysfunction may benefit most from additional robot-supported training, but larger studies are needed.

Trial registration

This trial is registered within the registry Clinical Trials GOV (NCT02257606).


Url:
DOI: 10.1186/s12984-015-0043-3
PubMed: 26202325
PubMed Central: 4511982

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4511982

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS</title>
<author>
<name sortKey="Feys, Peter" sort="Feys, Peter" uniqKey="Feys P" first="Peter" last="Feys">Peter Feys</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Coninx, Karin" sort="Coninx, Karin" uniqKey="Coninx K" first="Karin" last="Coninx">Karin Coninx</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kerkhofs, Lore" sort="Kerkhofs, Lore" uniqKey="Kerkhofs L" first="Lore" last="Kerkhofs">Lore Kerkhofs</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff3">Rehabilitation and MS Center Overpelt, 3900 Overpelt, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Rehabilitation and MS Center Overpelt, 3900 Overpelt</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Weyer, Tom" sort="De Weyer, Tom" uniqKey="De Weyer T" first="Tom" last="De Weyer">Tom De Weyer</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Truyens, Veronik" sort="Truyens, Veronik" uniqKey="Truyens V" first="Veronik" last="Truyens">Veronik Truyens</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff3">Rehabilitation and MS Center Overpelt, 3900 Overpelt, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Rehabilitation and MS Center Overpelt, 3900 Overpelt</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Maris, Anneleen" sort="Maris, Anneleen" uniqKey="Maris A" first="Anneleen" last="Maris">Anneleen Maris</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lamers, Ilse" sort="Lamers, Ilse" uniqKey="Lamers I" first="Ilse" last="Lamers">Ilse Lamers</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26202325</idno>
<idno type="pmc">4511982</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511982</idno>
<idno type="RBID">PMC:4511982</idno>
<idno type="doi">10.1186/s12984-015-0043-3</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000846</idno>
<idno type="wicri:Area/Pmc/Curation">000846</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS</title>
<author>
<name sortKey="Feys, Peter" sort="Feys, Peter" uniqKey="Feys P" first="Peter" last="Feys">Peter Feys</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Coninx, Karin" sort="Coninx, Karin" uniqKey="Coninx K" first="Karin" last="Coninx">Karin Coninx</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kerkhofs, Lore" sort="Kerkhofs, Lore" uniqKey="Kerkhofs L" first="Lore" last="Kerkhofs">Lore Kerkhofs</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff3">Rehabilitation and MS Center Overpelt, 3900 Overpelt, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Rehabilitation and MS Center Overpelt, 3900 Overpelt</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Weyer, Tom" sort="De Weyer, Tom" uniqKey="De Weyer T" first="Tom" last="De Weyer">Tom De Weyer</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Truyens, Veronik" sort="Truyens, Veronik" uniqKey="Truyens V" first="Veronik" last="Truyens">Veronik Truyens</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff3">Rehabilitation and MS Center Overpelt, 3900 Overpelt, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Rehabilitation and MS Center Overpelt, 3900 Overpelt</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Maris, Anneleen" sort="Maris, Anneleen" uniqKey="Maris A" first="Anneleen" last="Maris">Anneleen Maris</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lamers, Ilse" sort="Lamers, Ilse" uniqKey="Lamers I" first="Ilse" last="Lamers">Ilse Lamers</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</nlm:aff>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of NeuroEngineering and Rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS.</p>
</sec>
<sec>
<title>Aim</title>
<p>To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only.</p>
</sec>
<sec>
<title>Methods</title>
<p>Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5–8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied.</p>
</sec>
<sec>
<title>Results</title>
<p>PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper limb dysfunction may benefit most from additional robot-supported training, but larger studies are needed.</p>
</sec>
<sec>
<title>Trial registration</title>
<p>This trial is registered within the registry Clinical Trials GOV (
<ext-link ext-link-type="uri" xlink:href="https://clinicaltrials.gov/ct2/show/NCT02257606">NCT02257606</ext-link>
).</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Motl, Rw" uniqKey="Motl R">RW Motl</name>
</author>
<author>
<name sortKey="Mcauley, E" uniqKey="Mcauley E">E McAuley</name>
</author>
<author>
<name sortKey="Snook, Em" uniqKey="Snook E">EM Snook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stuifbergen, Ak" uniqKey="Stuifbergen A">AK Stuifbergen</name>
</author>
<author>
<name sortKey="Blozis, Sa" uniqKey="Blozis S">SA Blozis</name>
</author>
<author>
<name sortKey="Harrison, Tc" uniqKey="Harrison T">TC Harrison</name>
</author>
<author>
<name sortKey="Becker, Ha" uniqKey="Becker H">HA Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Latimer Cheung, Ae" uniqKey="Latimer Cheung A">AE Latimer-Cheung</name>
</author>
<author>
<name sortKey="Pilutti, La" uniqKey="Pilutti L">LA Pilutti</name>
</author>
<author>
<name sortKey="Hicks, Al" uniqKey="Hicks A">AL Hicks</name>
</author>
<author>
<name sortKey="Martin Ginis, Ka" uniqKey="Martin Ginis K">KA Martin Ginis</name>
</author>
<author>
<name sortKey="Fenuta, Am" uniqKey="Fenuta A">AM Fenuta</name>
</author>
<author>
<name sortKey="Mackibbon, Ka" uniqKey="Mackibbon K">KA MacKibbon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dalgas, U" uniqKey="Dalgas U">U Dalgas</name>
</author>
<author>
<name sortKey="Stenager, E" uniqKey="Stenager E">E Stenager</name>
</author>
<author>
<name sortKey="Ingemann Hansen, T" uniqKey="Ingemann Hansen T">T Ingemann-Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heesen, C" uniqKey="Heesen C">C Heesen</name>
</author>
<author>
<name sortKey="Bohm, J" uniqKey="Bohm J">J Bohm</name>
</author>
<author>
<name sortKey="Reich, C" uniqKey="Reich C">C Reich</name>
</author>
<author>
<name sortKey="Kasper, J" uniqKey="Kasper J">J Kasper</name>
</author>
<author>
<name sortKey="Goebel, M" uniqKey="Goebel M">M Goebel</name>
</author>
<author>
<name sortKey="Gold, Sm" uniqKey="Gold S">SM Gold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kierkegaard, M" uniqKey="Kierkegaard M">M Kierkegaard</name>
</author>
<author>
<name sortKey="Einarsson, U" uniqKey="Einarsson U">U Einarsson</name>
</author>
<author>
<name sortKey="Gottberg, K" uniqKey="Gottberg K">K Gottberg</name>
</author>
<author>
<name sortKey="Von Koch, L" uniqKey="Von Koch L">L von Koch</name>
</author>
<author>
<name sortKey="Holmqvist, Lw" uniqKey="Holmqvist L">LW Holmqvist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansson, S" uniqKey="Johansson S">S Johansson</name>
</author>
<author>
<name sortKey="Ytterberg, C" uniqKey="Ytterberg C">C Ytterberg</name>
</author>
<author>
<name sortKey="Claesson, Im" uniqKey="Claesson I">IM Claesson</name>
</author>
<author>
<name sortKey="Lindberg, J" uniqKey="Lindberg J">J Lindberg</name>
</author>
<author>
<name sortKey="Hillert, J" uniqKey="Hillert J">J Hillert</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spooren, Ai" uniqKey="Spooren A">AI Spooren</name>
</author>
<author>
<name sortKey="Timmermans, Aa" uniqKey="Timmermans A">AA Timmermans</name>
</author>
<author>
<name sortKey="Seelen, Ha" uniqKey="Seelen H">HA Seelen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Nf" uniqKey="Taylor N">NF Taylor</name>
</author>
<author>
<name sortKey="Dodd, Kj" uniqKey="Dodd K">KJ Dodd</name>
</author>
<author>
<name sortKey="Prasad, D" uniqKey="Prasad D">D Prasad</name>
</author>
<author>
<name sortKey="Denisenko, S" uniqKey="Denisenko S">S Denisenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romberg, A" uniqKey="Romberg A">A Romberg</name>
</author>
<author>
<name sortKey="Virtanen, A" uniqKey="Virtanen A">A Virtanen</name>
</author>
<author>
<name sortKey="Ruutiainen, J" uniqKey="Ruutiainen J">J Ruutiainen</name>
</author>
<author>
<name sortKey="Aunola, S" uniqKey="Aunola S">S Aunola</name>
</author>
<author>
<name sortKey="Karppi, Sl" uniqKey="Karppi S">SL Karppi</name>
</author>
<author>
<name sortKey="Vaara, M" uniqKey="Vaara M">M Vaara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, J" uniqKey="Freeman J">J Freeman</name>
</author>
<author>
<name sortKey="Walters, R" uniqKey="Walters R">R Walters</name>
</author>
<author>
<name sortKey="Ingram, W" uniqKey="Ingram W">W Ingram</name>
</author>
<author>
<name sortKey="Slade, A" uniqKey="Slade A">A Slade</name>
</author>
<author>
<name sortKey="Hobart, J" uniqKey="Hobart J">J Hobart</name>
</author>
<author>
<name sortKey="Zajicek, J" uniqKey="Zajicek J">J Zajicek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, F" uniqKey="Khan F">F Khan</name>
</author>
<author>
<name sortKey="Turner Stokes, L" uniqKey="Turner Stokes L">L Turner-Stokes</name>
</author>
<author>
<name sortKey="Ng, L" uniqKey="Ng L">L Ng</name>
</author>
<author>
<name sortKey="Kilpatrick, T" uniqKey="Kilpatrick T">T Kilpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Ac" uniqKey="Lo A">AC Lo</name>
</author>
<author>
<name sortKey="Guarino, Pd" uniqKey="Guarino P">PD Guarino</name>
</author>
<author>
<name sortKey="Richards, Lg" uniqKey="Richards L">LG Richards</name>
</author>
<author>
<name sortKey="Haselkorn, Jk" uniqKey="Haselkorn J">JK Haselkorn</name>
</author>
<author>
<name sortKey="Wittenberg, Gf" uniqKey="Wittenberg G">GF Wittenberg</name>
</author>
<author>
<name sortKey="Federman, Dg" uniqKey="Federman D">DG Federman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gijbels, D" uniqKey="Gijbels D">D Gijbels</name>
</author>
<author>
<name sortKey="Lamers, I" uniqKey="Lamers I">I Lamers</name>
</author>
<author>
<name sortKey="Kerkhofs, L" uniqKey="Kerkhofs L">L Kerkhofs</name>
</author>
<author>
<name sortKey="Alders, G" uniqKey="Alders G">G Alders</name>
</author>
<author>
<name sortKey="Knippenberg, E" uniqKey="Knippenberg E">E Knippenberg</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehrholz, J" uniqKey="Mehrholz J">J Mehrholz</name>
</author>
<author>
<name sortKey="Hadrich, A" uniqKey="Hadrich A">A Hadrich</name>
</author>
<author>
<name sortKey="Platz, T" uniqKey="Platz T">T Platz</name>
</author>
<author>
<name sortKey="Kugler, J" uniqKey="Kugler J">J Kugler</name>
</author>
<author>
<name sortKey="Pohl, M" uniqKey="Pohl M">M Pohl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casadio, M" uniqKey="Casadio M">M Casadio</name>
</author>
<author>
<name sortKey="Sanguineti, V" uniqKey="Sanguineti V">V Sanguineti</name>
</author>
<author>
<name sortKey="Morasso, P" uniqKey="Morasso P">P Morasso</name>
</author>
<author>
<name sortKey="Solaro, C" uniqKey="Solaro C">C Solaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpinella, I" uniqKey="Carpinella I">I Carpinella</name>
</author>
<author>
<name sortKey="Cattaneo, D" uniqKey="Cattaneo D">D Cattaneo</name>
</author>
<author>
<name sortKey="Abuarqub, S" uniqKey="Abuarqub S">S Abuarqub</name>
</author>
<author>
<name sortKey="Ferrarin, M" uniqKey="Ferrarin M">M Ferrarin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpinella, I" uniqKey="Carpinella I">I Carpinella</name>
</author>
<author>
<name sortKey="Cattaneo, D" uniqKey="Cattaneo D">D Cattaneo</name>
</author>
<author>
<name sortKey="Bertoni, R" uniqKey="Bertoni R">R Bertoni</name>
</author>
<author>
<name sortKey="Ferrarin, M" uniqKey="Ferrarin M">M Ferrarin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lohse, Kr" uniqKey="Lohse K">KR Lohse</name>
</author>
<author>
<name sortKey="Hilderman, Cg" uniqKey="Hilderman C">CG Hilderman</name>
</author>
<author>
<name sortKey="Cheung, Kl" uniqKey="Cheung K">KL Cheung</name>
</author>
<author>
<name sortKey="Tatla, S" uniqKey="Tatla S">S Tatla</name>
</author>
<author>
<name sortKey="Van Der Loos, Hf" uniqKey="Van Der Loos H">HF Van der Loos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laver, Ke" uniqKey="Laver K">KE Laver</name>
</author>
<author>
<name sortKey="George, S" uniqKey="George S">S George</name>
</author>
<author>
<name sortKey="Thomas, S" uniqKey="Thomas S">S Thomas</name>
</author>
<author>
<name sortKey="Deutsch, Je" uniqKey="Deutsch J">JE Deutsch</name>
</author>
<author>
<name sortKey="Crotty, M" uniqKey="Crotty M">M Crotty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lozano Quilis, Ja" uniqKey="Lozano Quilis J">JA Lozano-Quilis</name>
</author>
<author>
<name sortKey="Gil Gomez, H" uniqKey="Gil Gomez H">H Gil-Gomez</name>
</author>
<author>
<name sortKey="Gil Gomez, Ja" uniqKey="Gil Gomez J">JA Gil-Gomez</name>
</author>
<author>
<name sortKey="Albiol Perez, S" uniqKey="Albiol Perez S">S Albiol-Perez</name>
</author>
<author>
<name sortKey="Palacios Navarro, G" uniqKey="Palacios Navarro G">G Palacios-Navarro</name>
</author>
<author>
<name sortKey="Fardoun, Hm" uniqKey="Fardoun H">HM Fardoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Gn" uniqKey="Lewis G">GN Lewis</name>
</author>
<author>
<name sortKey="Rosie, Ja" uniqKey="Rosie J">JA Rosie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Gn" uniqKey="Lewis G">GN Lewis</name>
</author>
<author>
<name sortKey="Woods, C" uniqKey="Woods C">C Woods</name>
</author>
<author>
<name sortKey="Rosie, Ja" uniqKey="Rosie J">JA Rosie</name>
</author>
<author>
<name sortKey="Mcpherson, Km" uniqKey="Mcpherson K">KM McPherson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imam, B" uniqKey="Imam B">B Imam</name>
</author>
<author>
<name sortKey="Jarus, T" uniqKey="Jarus T">T Jarus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, Aa" uniqKey="Timmermans A">AA Timmermans</name>
</author>
<author>
<name sortKey="Lemmens, Rj" uniqKey="Lemmens R">RJ Lemmens</name>
</author>
<author>
<name sortKey="Monfrance, M" uniqKey="Monfrance M">M Monfrance</name>
</author>
<author>
<name sortKey="Geers, Rp" uniqKey="Geers R">RP Geers</name>
</author>
<author>
<name sortKey="Bakx, W" uniqKey="Bakx W">W Bakx</name>
</author>
<author>
<name sortKey="Smeets, Rj" uniqKey="Smeets R">RJ Smeets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coote, S" uniqKey="Coote S">S Coote</name>
</author>
<author>
<name sortKey="Murphy, B" uniqKey="Murphy B">B Murphy</name>
</author>
<author>
<name sortKey="Harwin, W" uniqKey="Harwin W">W Harwin</name>
</author>
<author>
<name sortKey="Stokes, E" uniqKey="Stokes E">E Stokes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bastiaens, H" uniqKey="Bastiaens H">H Bastiaens</name>
</author>
<author>
<name sortKey="Alders, G" uniqKey="Alders G">G Alders</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
<author>
<name sortKey="Notelaers, S" uniqKey="Notelaers S">S Notelaers</name>
</author>
<author>
<name sortKey="Coninx, K" uniqKey="Coninx K">K Coninx</name>
</author>
<author>
<name sortKey="Kerkhofs, L" uniqKey="Kerkhofs L">L Kerkhofs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krabben, T" uniqKey="Krabben T">T Krabben</name>
</author>
<author>
<name sortKey="Prange, Gb" uniqKey="Prange G">GB Prange</name>
</author>
<author>
<name sortKey="Molier, Bi" uniqKey="Molier B">BI Molier</name>
</author>
<author>
<name sortKey="Stienen, Ah" uniqKey="Stienen A">AH Stienen</name>
</author>
<author>
<name sortKey="Jannink, Mj" uniqKey="Jannink M">MJ Jannink</name>
</author>
<author>
<name sortKey="Buurke, Jh" uniqKey="Buurke J">JH Buurke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beer, Rf" uniqKey="Beer R">RF Beer</name>
</author>
<author>
<name sortKey="Ellis, Md" uniqKey="Ellis M">MD Ellis</name>
</author>
<author>
<name sortKey="Holubar, Bg" uniqKey="Holubar B">BG Holubar</name>
</author>
<author>
<name sortKey="Dewald, Jp" uniqKey="Dewald J">JP Dewald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Octavia, Jr" uniqKey="Octavia J">JR Octavia</name>
</author>
<author>
<name sortKey="Coninx, K" uniqKey="Coninx K">K Coninx</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Weyer, Tns" uniqKey="De Weyer T">TNS De Weyer</name>
</author>
<author>
<name sortKey="Coninx, K" uniqKey="Coninx K">K Coninx</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
<author>
<name sortKey="Lamers, I" uniqKey="Lamers I">I Lamers</name>
</author>
<author>
<name sortKey="Alders, G" uniqKey="Alders G">G Alders</name>
</author>
<author>
<name sortKey="Geers, R" uniqKey="Geers R">R Geers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Octavia, Jr" uniqKey="Octavia J">JR Octavia</name>
</author>
<author>
<name sortKey="Coninx, K" uniqKey="Coninx K">K Coninx</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Notelaers, Sdwt" uniqKey="Notelaers S">SDWT Notelaers</name>
</author>
<author>
<name sortKey="Octavia, Jr" uniqKey="Octavia J">JR Octavia</name>
</author>
<author>
<name sortKey="Coninx, K" uniqKey="Coninx K">K Coninx</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, Aa" uniqKey="Timmermans A">AA Timmermans</name>
</author>
<author>
<name sortKey="Seelen, Ha" uniqKey="Seelen H">HA Seelen</name>
</author>
<author>
<name sortKey="Willmann, Rd" uniqKey="Willmann R">RD Willmann</name>
</author>
<author>
<name sortKey="Bakx, W" uniqKey="Bakx W">W Bakx</name>
</author>
<author>
<name sortKey="De Ruyter, B" uniqKey="De Ruyter B">B de Ruyter</name>
</author>
<author>
<name sortKey="Lanfermann, G" uniqKey="Lanfermann G">G Lanfermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Croarkin, E" uniqKey="Croarkin E">E Croarkin</name>
</author>
<author>
<name sortKey="Danoff, J" uniqKey="Danoff J">J Danoff</name>
</author>
<author>
<name sortKey="Barnes, C" uniqKey="Barnes C">C Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paltamaa, J" uniqKey="Paltamaa J">J Paltamaa</name>
</author>
<author>
<name sortKey="West, H" uniqKey="West H">H West</name>
</author>
<author>
<name sortKey="Sarasoja, T" uniqKey="Sarasoja T">T Sarasoja</name>
</author>
<author>
<name sortKey="Wikstrom, J" uniqKey="Wikstrom J">J Wikstrom</name>
</author>
<author>
<name sortKey="Malkia, E" uniqKey="Malkia E">E Malkia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Platz, T" uniqKey="Platz T">T Platz</name>
</author>
<author>
<name sortKey="Pinkowski, C" uniqKey="Pinkowski C">C Pinkowski</name>
</author>
<author>
<name sortKey="Van Wijck, F" uniqKey="Van Wijck F">F van Wijck</name>
</author>
<author>
<name sortKey="Kim, Ih" uniqKey="Kim I">IH Kim</name>
</author>
<author>
<name sortKey="Di Bella, P" uniqKey="Di Bella P">P di Bella</name>
</author>
<author>
<name sortKey="Johnson, G" uniqKey="Johnson G">G Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pantano, P" uniqKey="Pantano P">P Pantano</name>
</author>
<author>
<name sortKey="Mainero, C" uniqKey="Mainero C">C Mainero</name>
</author>
<author>
<name sortKey="Caramia, F" uniqKey="Caramia F">F Caramia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomassini, V" uniqKey="Tomassini V">V Tomassini</name>
</author>
<author>
<name sortKey="Johansen Berg, H" uniqKey="Johansen Berg H">H Johansen-Berg</name>
</author>
<author>
<name sortKey="Leonardi, L" uniqKey="Leonardi L">L Leonardi</name>
</author>
<author>
<name sortKey="Paixao, L" uniqKey="Paixao L">L Paixao</name>
</author>
<author>
<name sortKey="Jbabdi, S" uniqKey="Jbabdi S">S Jbabdi</name>
</author>
<author>
<name sortKey="Palace, J" uniqKey="Palace J">J Palace</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomassini, V" uniqKey="Tomassini V">V Tomassini</name>
</author>
<author>
<name sortKey="Johansen Berg, H" uniqKey="Johansen Berg H">H Johansen-Berg</name>
</author>
<author>
<name sortKey="Jbabdi, S" uniqKey="Jbabdi S">S Jbabdi</name>
</author>
<author>
<name sortKey="Wise, Rg" uniqKey="Wise R">RG Wise</name>
</author>
<author>
<name sortKey="Pozzilli, C" uniqKey="Pozzilli C">C Pozzilli</name>
</author>
<author>
<name sortKey="Palace, J" uniqKey="Palace J">J Palace</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Housman, Sj" uniqKey="Housman S">SJ Housman</name>
</author>
<author>
<name sortKey="Scott, Km" uniqKey="Scott K">KM Scott</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, Ww" uniqKey="Liao W">WW Liao</name>
</author>
<author>
<name sortKey="Wu, Cy" uniqKey="Wu C">CY Wu</name>
</author>
<author>
<name sortKey="Hsieh, Yw" uniqKey="Hsieh Y">YW Hsieh</name>
</author>
<author>
<name sortKey="Lin, Kc" uniqKey="Lin K">KC Lin</name>
</author>
<author>
<name sortKey="Chang, Wy" uniqKey="Chang W">WY Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamers, I" uniqKey="Lamers I">I Lamers</name>
</author>
<author>
<name sortKey="Kerkhofs, L" uniqKey="Kerkhofs L">L Kerkhofs</name>
</author>
<author>
<name sortKey="Raats, J" uniqKey="Raats J">J Raats</name>
</author>
<author>
<name sortKey="Kos, D" uniqKey="Kos D">D Kos</name>
</author>
<author>
<name sortKey="Van, Wb" uniqKey="Van W">WB Van</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, Aa" uniqKey="Timmermans A">AA Timmermans</name>
</author>
<author>
<name sortKey="Seelen, Ha" uniqKey="Seelen H">HA Seelen</name>
</author>
<author>
<name sortKey="Willmann, Rd" uniqKey="Willmann R">RD Willmann</name>
</author>
<author>
<name sortKey="Kingma, H" uniqKey="Kingma H">H Kingma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Ac" uniqKey="Lo A">AC Lo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, Aa" uniqKey="Timmermans A">AA Timmermans</name>
</author>
<author>
<name sortKey="Spooren, Ai" uniqKey="Spooren A">AI Spooren</name>
</author>
<author>
<name sortKey="Kingma, H" uniqKey="Kingma H">H Kingma</name>
</author>
<author>
<name sortKey="Seelen, Ha" uniqKey="Seelen H">HA Seelen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brochard, S" uniqKey="Brochard S">S Brochard</name>
</author>
<author>
<name sortKey="Robertson, J" uniqKey="Robertson J">J Robertson</name>
</author>
<author>
<name sortKey="Medee, B" uniqKey="Medee B">B Medee</name>
</author>
<author>
<name sortKey="Remy Neris, O" uniqKey="Remy Neris O">O Remy-Neris</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neuroeng Rehabil</journal-id>
<journal-id journal-id-type="iso-abbrev">J Neuroeng Rehabil</journal-id>
<journal-title-group>
<journal-title>Journal of NeuroEngineering and Rehabilitation</journal-title>
</journal-title-group>
<issn pub-type="epub">1743-0003</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26202325</article-id>
<article-id pub-id-type="pmc">4511982</article-id>
<article-id pub-id-type="publisher-id">43</article-id>
<article-id pub-id-type="doi">10.1186/s12984-015-0043-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Feys</surname>
<given-names>Peter</given-names>
</name>
<address>
<email>peter.feys@uhasselt.be</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Coninx</surname>
<given-names>Karin</given-names>
</name>
<address>
<email>karin.coninx@uhasselt.be</email>
</address>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kerkhofs</surname>
<given-names>Lore</given-names>
</name>
<address>
<email>lore.kerkhofs@msreva.be</email>
</address>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>De Weyer</surname>
<given-names>Tom</given-names>
</name>
<address>
<email>tom.deweyer@uhasselt.be</email>
</address>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Truyens</surname>
<given-names>Veronik</given-names>
</name>
<address>
<email>veronik.truyens@msreva.be</email>
</address>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Maris</surname>
<given-names>Anneleen</given-names>
</name>
<address>
<email>anneleen.maris@uhasselt.be</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lamers</surname>
<given-names>Ilse</given-names>
</name>
<address>
<email>ilse.lamers@uhasselt.be</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<label></label>
REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590 Diepenbeek, Belgium</aff>
<aff id="Aff2">
<label></label>
Expertise Centre for Digital Media - tUL – iMinds, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek, Belgium</aff>
<aff id="Aff3">
<label></label>
Rehabilitation and MS Center Overpelt, 3900 Overpelt, Belgium</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>23</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>23</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>12</volume>
<elocation-id>60</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>12</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>5</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Feys et al. 2015</copyright-statement>
<license license-type="open-access">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS.</p>
</sec>
<sec>
<title>Aim</title>
<p>To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only.</p>
</sec>
<sec>
<title>Methods</title>
<p>Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5–8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied.</p>
</sec>
<sec>
<title>Results</title>
<p>PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper limb dysfunction may benefit most from additional robot-supported training, but larger studies are needed.</p>
</sec>
<sec>
<title>Trial registration</title>
<p>This trial is registered within the registry Clinical Trials GOV (
<ext-link ext-link-type="uri" xlink:href="https://clinicaltrials.gov/ct2/show/NCT02257606">NCT02257606</ext-link>
).</p>
</sec>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2015</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>Multiple Sclerosis (MS) is a chronic progressive neurologic disease affecting young adults, manifesting with multiple neurological dysfunctions in the motor, sensory, visual and cognitive systems. Motor symptoms such as muscle weakness, incoordination and hypertonia affecting balance, walking and upper limb function occur frequently. It is known that many persons with MS (pwMS) show reduced physical activity which contributes to marked functional limitations [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
]. In the recent decade, numerous studies in MS have demonstrated that exercise therapy can have beneficial effects on different levels of the International Classification of Functioning (ICF) [
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR5">5</xref>
]. Physical exercise interventions in these studies were mostly targeted towards the lower limb muscle function, balance and/or walking [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
], the latter being perceived as a valuable bodily function which is already affected at early disease onset [
<xref ref-type="bibr" rid="CR6">6</xref>
]. However, as the disease progresses, the upper limbs get more affected which leads to accumulated disability especially when dysfunction is present bilaterally. Kierkegaard et al. reported that 76 % of a large Swedish sample of pwMS showed at least some disability regarding manual dexterity, leading to a significant negative impact on the performance of activities of daily life in half of all pwMS [
<xref ref-type="bibr" rid="CR7">7</xref>
], as a result reducing personal independence and quality of life [
<xref ref-type="bibr" rid="CR8">8</xref>
].</p>
<p>A systematic literature search on conventional motor training programs for the upper limbs in MS revealed that only a limited number of studies were exclusively dedicated to improve upper limb function [
<xref ref-type="bibr" rid="CR9">9</xref>
]. In fact, many studies investigated primarily the effects of multidisciplinary treatment or exercise therapy for the total body in pwMS without considerable upper limb dysfunction [
<xref ref-type="bibr" rid="CR10">10</xref>
<xref ref-type="bibr" rid="CR13">13</xref>
]. Positively, the results suggest a restorative potential of the upper limb function in pwMS. However, more research is needed in severely disabled pwMS. In a more advanced stage of the disease with severe disability, there is an increasing multiplicity of symptoms in MS and related bodily functioning problems (for example gait and balance dysfunction), and thus reducing time allocated to upper limb treatment. This lack of therapy time is in contrast with the knowledge that training volume and intensity is important to achieve improvements. In this framework, robot-supported interventions for the upper limb have been increasingly applied given its advantage of high intensity training, volume and duration which can be delivered without constant presence of a therapist. In both acute and chronic stroke patients, randomized controlled trials and systematic reviews concluded that robot-supported rehabilitation was as effective as intensive comparative conventional treatment for improving motor function, and furthermore, potentially activity level [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
]. In MS, uncontrolled pilot studies in small sample sizes (<10) have indicated the potential of robot-supported upper limb training in pwMS with muscle weakness and cerebellar symptoms. Gijbels et al. (2011) reported, in highly disabled and wheelchair bound pwMS (Expanded Disability Status Scale (EDSS): 7–8.5), beneficial effects of an additional 8 week upper limb training with a 3D electromechanical exoskeleton providing anti-gravity support (ARMEO Spring, Hocoma, CH) [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
]. The usefulness of a 2D end-effector robot (Braccio di Ferro) has been repeatedly reported for assessing and training upper limb motor co-ordination [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
]. After 8 training sessions of 1 h over 2–4 weeks with this device, pwMS (EDSS 3.0–6.5) showed gains in velocity, linearity and smoothness of reaching movements as well as decrease in ataxia and tremor scores. The latter results were replicated recently in a RCT [
<xref ref-type="bibr" rid="CR20">20</xref>
]. Above-mentioned studies indicate that robot-supported upper limb training is potentially effective to improve motor function, but knowledge on impact on activity level is sparse. It is concluded that controlled trials with a comprehensive test battery on different ICF levels is warranted.</p>
<p>To further enhance the applicability and effectiveness of technology-supported training modalities, virtual reality applications are increasingly developing, with recent reviews indicating benefits on upper limb activity level in persons with stroke [
<xref ref-type="bibr" rid="CR21">21</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
]. In MS, the use of serious gaming in combination with off-the-shelf technology such as Kinect seems enjoyable and may ameliorate rehabilitation adherence with regards to balance [
<xref ref-type="bibr" rid="CR23">23</xref>
]. Only few developments are being known for the upper limb [
<xref ref-type="bibr" rid="CR24">24</xref>
]. Upper limb rehabilitation in a virtual environment has the advantage that pwMS with severe dysfunctions can experience success during training by increasing motivation for intensive and long-term active motor training [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
]. Optimal custom-built virtual learning environment with a personalised approach that incorporate aspects of motor and cognitive-social learning are available [
<xref ref-type="bibr" rid="CR27">27</xref>
].</p>
<p>This pilot RCT investigated the effects of an additional 3D robot-supported upper limb training of 8 weeks in disabled pwMS; incorporating a personalized virtual learning environment (see
<xref rid="Sec2" ref-type="sec">Methods</xref>
section), in comparison to pwMS receiving conventional treatment only. Both movement quality during robot-mediated movement tasks as well as clinical measures at function and activity levels were assessed.</p>
</sec>
<sec id="Sec2" sec-type="methods">
<title>Methods</title>
<sec id="Sec3">
<title>Participants</title>
<p>Seventeen pwMS diagnosed according to the McDonald criteria and upper limb weakness determined by the Motricity Index (MI; score < 85), participated. Participants with (nearly) total paralysis of both upper limbs based on the Motricity Index were excluded. This was due to the robot-supported training, because this system required the ability to produce independent movements with the upper extremity with a minimal 3D amplitude of 6 cm. Similarly, pwMS presenting with visual, cognitive and cerebellar dysfunctions, as detected by the neurologist during evaluation of the related functional systems of the EDSS, and potentially interfering with task execution, were excluded. PwMS having a relapse in the last month before study onset or receiving relapse-related glucocorticosteroid treatment were also excluded.</p>
<p>Participants were either hospitalised in the Rehabilitation and MS Center Overpelt (Belgium) for multiple weeks receiving treatment from multiple disciplines (for example, physiotherapy, occupational therapy, psychology, speech therapy), or bi-weekly attended rehabilitation sessions at the rehabilitation center on an ambulant basis, i.e. with the participant living in the community and coming to the center for therapy purposes. The conventional rehabilitation program consisted of 2 h multidisciplinary treatment per day including 30 min physiotherapy, 30 min occupational therapy and 60 min group physiotherapy, speech therapy or psychotherapy depending on the needs of the participant. Ethical approval was obtained from the Medical Ethical Committee of the Hasselt University and the ethical committee of the Rehabilitation and MS centre of Overpelt. All participants gave their written consent. The authors confirm that all ongoing and related trials for this intervention are registered within the register Clinical Trials GOV (
<ext-link ext-link-type="uri" xlink:href="http://www.clinicaltrials.gov/NCT02257606">NCT02257606</ext-link>
).</p>
</sec>
<sec id="Sec4">
<title>Experimental design</title>
<p>This study is a randomised controlled trial in pwMS differentiating a control group receiving conventional therapy, and an intervention group additionally receiving robot-supported training. Robot training was provided for the duration of 8 consecutive weeks at a frequency of 3 times per week, on Mondays, Wednesdays and Fridays. The training sessions always took place at the same time of day and lasted for 30 min. In total the participants received 12 h of robot training in addition to usual care. All completed the training between April 11th and September 30th, 2011. Measurements were performed at week 0 and week 8 to compare changes of the intervention group after the additional robot-supported therapy with the longitudinal changes of the control group receiving only 8 weeks of conventional therapy. Included pwMS were randomly allocated in an MS intervention group (
<italic>n</italic>
 = 9) and a MS control group (
<italic>n</italic>
 = 8) by the sealed envelope method by a person not involved in the trial (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). Based on the MI, the weakest upper limb was identified for evaluation and training. However, in case the weakest upper limb was almost completely paralyzed, the other upper limb was trained if eligible by showing muscle weakness. When both arms were equally impaired, the participant’s preference was taken into account. In the control group, the same criteria was applied for selecting the upper limb that was evaluated.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>CONSORT flowchart</p>
</caption>
<graphic xlink:href="12984_2015_43_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec5">
<title>Experimental apparatus & procedure</title>
<p>Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
shows an overview of the system set-up. The HapticMaster robot (MOOG, the Netherlands) functioned both as an output device, providing haptic feedback during the training by guiding or hindering movements with exerted forces, but also as an input device, allowing navigation within a virtual learning environment. The HapticMaster was chosen as it has a relatively large 3D workspace for upper limb training (36 cm for depth, 40 cm height and 1 rad for mediolateral movements). This robot has been previously used in stroke rehabilitation [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
]. Training occurred in a sitting position in a chair or in a wheelchair; in the case of wheelchair-bound pwMS. The position of chair or wheelchair towards the HapticMaster was standardized by the use of a numbered checkerboard placed on the floor. The participant’s hand was placed in a small palmar brace embedded in an ADL gimbal that was connected to the endpoint of the HapticMaster. Participant’s hand movements were unrestrained, allowing spontaneous opening and closing of the hand. A large 40” screen was placed at 1.5 m in front of the participant to display the virtual learning environment.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Hardware set-up, including a haptic robot, sling and visual display</p>
</caption>
<graphic xlink:href="12984_2015_43_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>At the beginning of each session, the need for gravity compensation was individually determined using an active positioning procedure requiring a sustained endpoint position in space [
<xref ref-type="bibr" rid="CR30">30</xref>
]. This procedure was performed to further allow pwMS with prominent muscle weakness to engage in intensive training, as gravity compensation facilitates the execution of sufficiently large upper limb movements [
<xref ref-type="bibr" rid="CR30">30</xref>
<xref ref-type="bibr" rid="CR32">32</xref>
]. Gravity compensation was provided by the HapticMaster at the hand, or additionally by means of a sling (FOCAL, Tilburg, the Netherlands) supporting the elbow. Then, the active workspace in three dimensions was individually determined for matching the programmed locations of targets in the virtual learning environment with the participant’s active capabilities.</p>
<p>I-TRAVLE, stands for ‘Individualised Technology-supported and Robot-assisted Virtual Learning Environment’. It consists of use interfaces for evaluation of arm movements and performance of 3D exercises in a custom-built virtual learning environment. The system has been developed within a European multi-disciplinary cross-border project (Interreg-IV “Rehabilitation Robotics II & I-TRAVLE” IVA-VLANED 1.14; see
<ext-link ext-link-type="uri" xlink:href="http://www.i-travle.eu/">www.i-travle.eu</ext-link>
). This virtual learning environment allows persons to learn and train skill components, which are required during upper limb related activities of daily life. The virtual learning environment enables therapeutic based training of motor function by gradually changing the amplitude, speed, accuracy requirements, and knowledge of performance while providing feedback by the means of haptic, visual and auditory stimuli. The virtual learning environment permits training of different skill components separately such as lifting, transporting, pushing, pulling, reaching and retrieving and rubbing (see Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
for an illustration). On the other hand, it permits playing of serious games which can be defined as games that are designed for a primary purpose other than of pure entertainment. The developed serious games incorporated simultaneous training of multiple skill components combined with cognitive distractors and challenges. The serious games [
<xref ref-type="bibr" rid="CR28">28</xref>
<xref ref-type="bibr" rid="CR32">32</xref>
] were ‘penguins’ [
<xref ref-type="bibr" rid="CR33">33</xref>
]’, ‘arkanoid’, ‘chicken run’ and ‘watering the flowers’ [
<xref ref-type="bibr" rid="CR34">34</xref>
] (see Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
for illustration and description). Each training session consisted of 30 min training, starting with basic motor function exercises of different skill components separately, followed by the serious games [
<xref ref-type="bibr" rid="CR33">33</xref>
<xref ref-type="bibr" rid="CR36">36</xref>
].
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Example of basic motor function exercise ‘reach’ (
<bold>a</bold>
) and ‘pull’ (
<bold>b</bold>
). Participants have to reach or pull the disk towards the target. Visual feedback on the correctness of the executed trajectory is provided by colour changes of the disk (green, orange, red). During pulling, subjects experience resistance on, or are pulled to, the trajectory</p>
</caption>
<graphic xlink:href="12984_2015_43_Fig3_HTML" id="MO3"></graphic>
</fig>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Serious games
<bold>a</bold>
‘Watering the flowers’ and
<bold>b</bold>
‘Chicken run’.
<bold>a</bold>
In ‘watering the flowers’, the skill components lifting, transporting and pro/supination are performed while filling a glass with coloured fertilizer and watering the flowers with the matching colour.
<bold>b</bold>
‘Chicken run’ addresses transporting, reaching, pushing and retrieval while collecting eggs and bringing them to the egg-cup. Subjects are prompted to collect as much points as possible in a particular time frame while avoiding distractors</p>
</caption>
<graphic xlink:href="12984_2015_43_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>All exercises required precise and stabilised end-positions to successfully perform the task-oriented movements. The grasp of objects in the virtual environment was not possible with the hardware (gimbal) given the lack of a gripper, but was enabled when a stable position near the object was maintained for 3 s. The exercises varied regarding number of movement directions (1-2-3D), haptic environment, precision level and type of required movements, cognitive load with distractors and prerequisites for success, etc.</p>
<p>Training in the virtual learning environment was personalized. The initial selection of the basic motor function exercises of different skill components and serious games that was provided to the patient was based on a semi-structured interview. This was inspired on the motor activity log (MAL) on which daily life activities the pwMS wanted to improve [
<xref ref-type="bibr" rid="CR37">37</xref>
]. Difficulty levels of the basic motor function exercises of different skill components and serious games were adapted according to the therapist’s clinical judgement on exercise performance and upper limb movement quality as well as the presence of compensatory movements (e.g. trunk flexion, shoulder elevation, etc.). This could be done by changing the training volume, required movement amplitude, the extent of visual, auditory and haptic feedback, the weight of objects and number of distractors. The pre-programmed exercises were semi-autonomously executed by the pwMS but under supervision of the therapist for safety reasons and program adaptation.</p>
</sec>
<sec id="Sec6">
<title>Clinical outcome measures</title>
<p>On function level, the Motricity Index (MI) was applied to measure upper limb muscle strength (pinch grip, elbow flexion and shoulder abduction) with normal score being 100 [
<xref ref-type="bibr" rid="CR38">38</xref>
]. Maximal hand grip strength (kg) was determined by means of the JAMAR® hand-held dynamometer (Biometrics Ltd., Ladysmith, USA) [
<xref ref-type="bibr" rid="CR39">39</xref>
]. To assess motor control on function and activity level, the Fugl Meyer (FM) was conducted. The FM contains a proximal (items related to shoulder, elbow and forearm movements) and a distal part (wrist movements and grip) with maximal scores of 42 and 24 points respectively and a total maximal score of 66 for the complete upper limb motor section [
<xref ref-type="bibr" rid="CR40">40</xref>
].</p>
<p>On activity level, the Action Research Arm test (ARAT) was applied, which assesses the ability to handle objects differing in size, weight and shape as well as gross movements (normal score = 57) [
<xref ref-type="bibr" rid="CR40">40</xref>
]. The Motor Activity Log (MAL), Dutch version, was conducted to measure perceived performance of the upper limbs [
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
]. Participants were asked to score the amount of use (AOU) and quality of movement (QOM) of the upper limbs for 17 pre-defined activities by using an ordinal rating scale (0–5). The MAL USE score is the sum of the AOU and QOM (0–10). Besides, participants’ reports on changes were documented during an interview with open-ended questions. These are questions that cannot be answered with a yes or no but require a comprehensive answer.</p>
</sec>
<sec id="Sec7">
<title>Robotic outcome measures</title>
<p>Participant’s evolution in motor function was also measured in the intervention group with the evaluation-module of I-TRAVLE. This module consists of two parts: the first part measures the active range of motion (aROM) and the second part measures movement duration, velocity and quality (spatial efficiency) during the performance of three skill components.</p>
<p>For the measurement of aROM the participant was instructed to reach out as far as possible into 6 directions (forward, backward, upward, downward, medial and lateral) starting from a standardised starting position with 45° elbow flexion in line with the Haptic Master and the height of the hand at 50 % between the shoulder and knee [
<xref ref-type="bibr" rid="CR30">30</xref>
]. In order to guide the movement in the right direction a haptic tube was implemented which restricts deviations in other directions. Reaching distance is expressed in centimetres from starting point till the farthest reaching point for each six directions separately.</p>
<p>Movement duration, velocity and movement quality was measured during reaching (forward and backward directions), lifting (upward and downward directions) and transporting (lateral and medial directions). Participants were instructed to move as fast and accurate as possible. Movement time, shortest distance between the two targets and real covered distance were stored, allowing calculation of the following outcome measures: movement velocity (m/s) was determined as the real covered distance divided by movement time. Movement quality was expressed by the hand path ratio which is the real covered distance divided by the shortest distance between goals, as such reflecting spatial movement efficiency.</p>
</sec>
<sec id="Sec8">
<title>Statistical analysis</title>
<p>The intervention and control group consisted of nine and eight persons respectively. Because of the small sample size, non-parametric statistics were performed. Mann–Whitney U and Chi Square tests compared groups for the descriptive and clinical variables at baseline. The Wilcoxon Signed Rank Test was applied for comparison between week 0 and 8 within each group. For the robotic outcome measures, the Wilcoxon signed rank test was performed between week 0 and 8 for the intervention group only. Statistica software was used with significance level set at p < 0.05.</p>
</sec>
</sec>
<sec id="Sec9" sec-type="results">
<title>Results</title>
<p>Clinical characteristics of the intervention and control group are presented in Table 
<xref rid="Tab1" ref-type="table">1</xref>
. EDSS was overall high (average above 7) indicating inclusion of pwMS with high overall disability with most of the pwMS being wheelchair bound. The majority of pwMS predominantly used their right arm in daily life, which was also the trained arm in approximately half of the intervention group.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Clinical characteristics of the MS intervention and MS control group</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Subject</th>
<th>EDSS</th>
<th>Age</th>
<th>Sex (F/M)</th>
<th>Type of MS</th>
<th>Disease duration (yrs)</th>
<th>Wheelchair-bound</th>
<th>Current hand dominance</th>
<th>Arm trained</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3">MS Experimental group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.5</td>
<td>65</td>
<td>F</td>
<td>SP</td>
<td>25</td>
<td>Yes</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>2</td>
<td>8.0</td>
<td>57</td>
<td>M</td>
<td>SP</td>
<td>27</td>
<td>Yes</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>3</td>
<td>8.0</td>
<td>75</td>
<td>M</td>
<td>SP</td>
<td>10</td>
<td>Yes</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>64</td>
<td>M</td>
<td>PP</td>
<td>14</td>
<td>Yes</td>
<td>Left</td>
<td>Left</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>56</td>
<td>M</td>
<td>SP</td>
<td>26</td>
<td>Yes</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>6</td>
<td>8.5</td>
<td>55</td>
<td>M</td>
<td>SP</td>
<td>27</td>
<td>Yes</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>58</td>
<td>F</td>
<td>SP</td>
<td>3</td>
<td>No</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>72</td>
<td>M</td>
<td>SP</td>
<td>34</td>
<td>Yes</td>
<td>Left</td>
<td>Left</td>
</tr>
<tr>
<td>9</td>
<td>7.0</td>
<td>47</td>
<td>F</td>
<td>RR</td>
<td>24</td>
<td>Yes</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>Median</td>
<td>8</td>
<td>58</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQR</td>
<td>8-8</td>
<td>56–65</td>
<td></td>
<td></td>
<td>14–27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="3">MS Control group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.0</td>
<td>59</td>
<td>M</td>
<td>SP</td>
<td>18</td>
<td>Yes</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>2</td>
<td>7.5</td>
<td>46</td>
<td>F</td>
<td>SP</td>
<td>10</td>
<td>Yes</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
<td>50</td>
<td>M</td>
<td>SP</td>
<td>8</td>
<td>Yes</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>52</td>
<td>F</td>
<td>SP</td>
<td>14</td>
<td>Yes</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>49</td>
<td>F</td>
<td>SP</td>
<td>23</td>
<td>Yes</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
<td>48</td>
<td>F</td>
<td>SP</td>
<td>5</td>
<td>No</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>7</td>
<td>6.5</td>
<td>62</td>
<td>M</td>
<td>SP</td>
<td>21</td>
<td>No</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>8</td>
<td>7.5</td>
<td>59</td>
<td>M</td>
<td>PP</td>
<td>/</td>
<td>No</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>Median</td>
<td>7.3</td>
<td>61</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQR</td>
<td>6.9–7.6</td>
<td>47–75</td>
<td></td>
<td></td>
<td>9–19.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>
<italic>0.25</italic>
<sup>
<italic>^</italic>
</sup>
</td>
<td>
<italic>0.11</italic>
<sup>
<italic>$</italic>
</sup>
</td>
<td></td>
<td></td>
<td>
<italic>0.09</italic>
<sup>
<italic>$</italic>
</sup>
</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Values reported are median and interquartile range, or number;
<italic>p</italic>
= p-value chi square test for nominal/ ordinal data or Mann-Whitney U Test for continous data to compare groups
<italic>yrs</italic>
years,
<italic>F</italic>
female,
<italic>M</italic>
male,
<italic>SP</italic>
secondary progressive MS,
<italic>RR</italic>
relapsing remitting MS;
<italic>PP</italic>
primary progressive MS</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>At baseline, the intervention and the control group were not significantly different regarding type of MS, EDSS, disease duration and all clinical and robotic upper limb outcome measures. After 8 weeks training, a near-threshold significant difference (
<italic>p</italic>
 = 0.048) was present between both groups for the MAL amount of use and the total MAL.</p>
<p>There were no significant changes found over time in neither the intervention nor the control group (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Observation of the raw data indicated that five persons in the intervention group, with marked to severe arm dysfunction improved on the Motricity Index and/or the Fugl Meyer test. Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
illustrates the changes on the FM and MI for subject 2 which is representative for pwMS with marked to severe arm dysfunction and subject 7 which is representative for pwMS with a mild upper limb function according to the scores on FM and MI.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Experimental clinical outcome measures (median [interquartile range]) at baseline and 8 weeks for both the intervention and control group</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="2"></th>
<th colspan="4">Intervention group (
<italic>n</italic>
 = 9)</th>
<th colspan="4">Control group (
<italic>n</italic>
 = 8)</th>
</tr>
<tr>
<th colspan="2"></th>
<th>Pre</th>
<th>Post</th>
<th></th>
<th>p</th>
<th>Pre</th>
<th>Post</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2">Motricity Index, 0–100</td>
<td>72.0 [59.0–76.0]</td>
<td>64.0 [60.0–83.0]</td>
<td>−8</td>
<td>ns</td>
<td>66.0 [50.8–70.5]</td>
<td>59.5 [46.3–77.8]</td>
<td>−6.5</td>
<td>ns</td>
</tr>
<tr>
<td colspan="2">Hand grip strength (kg)</td>
<td>21.3 [12.0–23.3]</td>
<td>21.0 [10.7–23.3]</td>
<td>−0.3</td>
<td>ns</td>
<td>16.3 [11.7–19.5]</td>
<td>17.0 [11.3–19.0]</td>
<td>0.7</td>
<td>ns</td>
</tr>
<tr>
<td colspan="2">Fugl Meyer, 0–66</td>
<td>52.0 [43.0–62.0]</td>
<td>52.0 [43.0–63.0]</td>
<td>0</td>
<td>ns</td>
<td>55.0 [40.0–57.5]</td>
<td>56.0 [40.0–59.0]</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Distal score, 0–24</td>
<td>20.0 [17.0–23.0]</td>
<td>19.0 [18.0–23.0]</td>
<td>−1</td>
<td>ns</td>
<td>19.5 [16.5–21.8]</td>
<td>20.0 [16.8–21.8]</td>
<td>0.5</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Proximal score, 0–42</td>
<td>33.0 [27.0–38.0]</td>
<td>32.0 [25.0–39.0]</td>
<td>−1</td>
<td>ns</td>
<td>33.0 [25.0–36.5]</td>
<td>34.0 [25.0–36.5]</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td colspan="2">Action Research Arm test , 0–57</td>
<td>40.0 [20.0–41.0]</td>
<td>38.0 [27.0–47.0]</td>
<td>−2</td>
<td>ns</td>
<td>36.0 [28.5–41.0]</td>
<td>35.0 [27.5–44.0]</td>
<td>−1</td>
<td>ns</td>
</tr>
<tr>
<td colspan="2">Motor Activity Log, 0–10</td>
<td>5.3 [2.1–8]</td>
<td>5.2 [4.3–7.1]</td>
<td>−0.1</td>
<td>ns</td>
<td>2.1 [1.5–4.7]</td>
<td>2.0 [0.7–5.1]</td>
<td>−0.1</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Amount of use, 0-5</td>
<td>3.0 [1.2–3.8]</td>
<td>3.0 [2.5–3.5]</td>
<td>0</td>
<td>ns</td>
<td>1.2 [0.9–2.5]</td>
<td>1.0 [0.5–2.6]</td>
<td>−0.2</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Quality of movement, 0-5</td>
<td>2.3 [1.0–4.0]</td>
<td>2.4 [1.8–2.9]</td>
<td>0.1</td>
<td>ns</td>
<td>0.9 [0.7–2.1]</td>
<td>0.9 [0.3–2.4]</td>
<td>0</td>
<td>ns</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Values reported are median and [interquartile range];
<italic>p</italic>
 = p-values, Wilcoxon Signed Rank Test. For all outcome measures, a higher score indicates a better upper limb performance. A positive delta indicates an improvement of the score after training compared to baseline and vice versa for a negative sign</p>
</table-wrap-foot>
</table-wrap>
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Proximal (
<bold>a</bold>
), distal (
<bold>b</bold>
) and total (
<bold>c</bold>
) FM score and Motricity Index (
<bold>d</bold>
) for subjects 2 and 7, pre- and post-I-TRAVLE training</p>
</caption>
<graphic xlink:href="12984_2015_43_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
<p>Table 
<xref rid="Tab3" ref-type="table">3</xref>
provides the results of the robotic generated outcome measures after 8 week training of the intervention group, providing information on active range of movement as well as movement speed and spatial accuracy in three dimensions. It appeared that active range of movement in the different directions remained unchanged. This result may perhaps be related to the limitations in the workspace of the haptic master itself, which was maximal for part of the pwMS at baseline. The intervention group, at group level, increased overall velocity during reaching, lifting and transporting, and thus reduced movement duration for all skill components. Movements were also more efficient in the spatial domain as revealed by a decreased hand-path ratio for transporting and some trend towards significance for reaching. Lifting movements did not change in the spatial domain. Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
illustratively shows individual changes in movement duration during transporting and hand path ratio during reaching for subject 2 and 7, before and after I-TRAVLE training.
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Experimental robotic outcome measures in the MS intervention group during transporting, reaching and lifting</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th></th>
<th>Median Pre [Q
<sub>1</sub>
–Q
<sub>3</sub>
]</th>
<th>Median Post [Q
<sub>1</sub>
–Q
<sub>3</sub>
]</th>
<th></th>
<th>
<italic>p-value</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="5">Transporting (Left-Right)</td>
<td>ROM (m)</td>
<td>0.666 [0.512–0.709]</td>
<td>0.622 [0.513–0.745]</td>
<td>−0.044</td>
<td>ns</td>
</tr>
<tr>
<td>Duration (s)</td>
<td>8.459 [5.955–21.324]</td>
<td>6.853 [5.957–7.044]</td>
<td>−1.606</td>
<td>0.043*</td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>0.163 [0.146–0.170]</td>
<td>0.206 [0.177–0.237]</td>
<td>0.043</td>
<td>0.018*</td>
</tr>
<tr>
<td>HPR</td>
<td>1.554 [1.388–3.413]</td>
<td>1.088 [0.978–1.451]</td>
<td>−0.466</td>
<td>0.017*</td>
</tr>
<tr>
<td>Distance (m)</td>
<td>1.304 [0.904–2.878]</td>
<td>1.307 [1.196–1.382]</td>
<td>0.003</td>
<td>ns</td>
</tr>
<tr>
<td rowspan="5">Reaching (Front-Back)</td>
<td>ROM (m)</td>
<td>0.375 [0.302–0.406]</td>
<td>0.405 [0.314–0.407]</td>
<td>0.030</td>
<td>ns</td>
</tr>
<tr>
<td>Duration (s)</td>
<td>7.575 [4.372–12.540]</td>
<td>5.802 [4.106–6.842]</td>
<td>−1.773</td>
<td>0.063**</td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>0.103 [0.072–0.175]</td>
<td>0.146 [0.120–0.177]</td>
<td>0.043</td>
<td>ns</td>
</tr>
<tr>
<td>HPR</td>
<td>2.114 [1.850–2.708]</td>
<td>1.894 [1.877–2.300]</td>
<td>−0.220</td>
<td>0.091**</td>
</tr>
<tr>
<td>Distance (m)</td>
<td>0.782 [0.687–0.936]</td>
<td>0.848 [0.656–0.905]</td>
<td>0.066</td>
<td>ns</td>
</tr>
<tr>
<td rowspan="5">Lifting (Up-Down)</td>
<td>ROM (m)</td>
<td>0.436 [0.436–0.436]</td>
<td>0.436 [0.411–0.436]</td>
<td>0.000</td>
<td>ns</td>
</tr>
<tr>
<td>Duration (s)</td>
<td>9.137 [6.141–10.804]</td>
<td>6.319 [3.268–9.106]</td>
<td>−2.818</td>
<td>0.008*</td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>0.128 [0.083–0.167]</td>
<td>0.152 [0.104–0.214]</td>
<td>0.024</td>
<td>0.051**</td>
</tr>
<tr>
<td>HPR</td>
<td>1.639 [1.572–2.863]</td>
<td>1.668 [1.448–2.244]</td>
<td>0.029</td>
<td>ns</td>
</tr>
<tr>
<td>Distance (m)</td>
<td>0.810 [0.776–1.414]</td>
<td>0.810 [0.715–1.032]</td>
<td>0.000</td>
<td>ns</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Values reported are median and [interquartile range]</p>
<p>
<italic>HPR</italic>
hand path ratio,
<italic>m</italic>
meters,
<italic>s</italic>
seconds,
<italic>m/s</italic>
meter per second,
<italic>ns</italic>
not significant</p>
<p>
<sup>*</sup>
significant Wilcoxon Signed Rank Test < 0.05;
<sup>**</sup>
trend towards significance 0.05 < p < 0.1</p>
</table-wrap-foot>
</table-wrap>
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Movement duration of transporting exercise and hand path ratio of the reaching exercise for subjects 2 and 7, pre- and post- I-TRAVLE training. Movement duration is expressed in seconds while the Hand Path Ratio is the real distance covered between the two goals divided by the shortest distance between the goals</p>
</caption>
<graphic xlink:href="12984_2015_43_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
<p>PwMS in the intervention group spontaneously reported beneficial changes in the daily use of their upper limb(s). One pwMS mentioned the obtained ability to eat a complete meal independently instead of only some initial independent bites (previously requiring the help of a nurse), as well as the ability to write longer emails. Another pwMS mentioned the ability of bilateral arm use such as simultaneously driving an electrical wheelchair with one hand while scratching their nose with the other hand; instead of doing those activities sequentially. Another pwMS reported the ability of hugging his wife again with both arms, which was not possible previously.</p>
</sec>
<sec id="Sec10" sec-type="discussion">
<title>Discussion</title>
<p>The present pilot RCT reported on changes in (perceived) upper limb function, in highly disabled pwMS with marked muscle weakness, after 8 weeks of additional robot-supported I-TRAVLE upper limb training compared to conventional treatment only. Effects were found in favor of improved motor control captured by the robot evaluation application and were mirrored by testimonials indicated on beneficial and meaningful effects in daily life. In contrast, no effects on standard clinical outcome measures on function or activity level of the ICF were present on group level.</p>
<p>It was observed that pwMS can improve motor control after robot-supported therapy in a virtual learning environment. While previous pilot work in MS measured changed kinematics during two-dimensional horizontal reaching [
<xref ref-type="bibr" rid="CR18">18</xref>
<xref ref-type="bibr" rid="CR20">20</xref>
], changes in the present study were present in three different directions (reaching, transporting, lifting) for movement speed. Furthermore, improvements were present in the spatial domain with increased movement efficiency during transporting, and indications for reaching. A reduced hand path ratio indicated that pwMS moved close to the optimal trajectory between the starting position of the hand and the target. These findings might suggest that there is a restorative potential of upper limb motor function in pwMS with overall high disability. This suggestion is important given that MS is a chronic and overall progressive disease, being characterized by high lesion load and/or brain atrophy in the more disabled pwMS [
<xref ref-type="bibr" rid="CR42">42</xref>
]. A preserved motor learning potential had been demonstrated before in pwMS despite a high burden of cerebral pathology, providing a neuroscientific rationale for recovery-oriented strategies [
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
]. One may however argue that improvements in motor function were related to adaptation of the pwMS towards the inertia of the haptic master, during the eight weeks of training. Although the latter is conceivable, it is pointed out that the target locations were not identical those provided during the training program. We do believe that upper limb movement control has really changed in the intervention group given the testimonials on very specific and upper limb related improvements in daily life. However, in future research it is recommended to use other sensor or robotic devices than the actual training device to evaluate movement quality improvements after rehabilitation.</p>
<p>There were no significant group effects on the clinical measures which was rather unexpected given that the robot-supported I-TRAVLE training was focused on motor function and goal-oriented movements, and applied according to therapeutic principles regarding training load and motor learning [
<xref ref-type="bibr" rid="CR9">9</xref>
]. Different factors may be discussed to explain the negative findings on group level, in contrast to beneficial effects in individual cases. First, the training may have been focusing mainly on proximal upper limb movement, which appeared to improve the robotic motor control tests but are not immediately translated to the tests encompassing distal hand function. Previous pilot studies in MS have indicated the possibility to improve upper limb function use after technology-supported training [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
]. These studies applied a three dimensional electromechanical device including a handle for grasp function to be controlled to successfully execute virtual games, and a one-dimensional robot including a condition where real-life objects had to be manipulated during training. The presented I-TRAVLE set-up allowed finger movements during movement execution which were however not required for the goal-directed movements in the virtual learning environment, and therefore likely not often performed. As such, no impact of I-TRAVLE training was found on the ARAT which requires manual dexterity for object manipulation. Maximaluscle strength was not increased after training. This was expected as the present intervention focused on motor control without including components of resistance training. The combination of unchanged muscle strength and manual dexterity may make it logical that also the MAL, reflecting perceived upper limb use, was not changed in contrast to previous technology-supported studies including a grasp function in MS and stroke [
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
<xref ref-type="bibr" rid="CR49">49</xref>
]. It is advised that technology-supported training should encompass a hand grip component in order to expect direct effects on manipulative tasks which are often required in daily life [
<xref ref-type="bibr" rid="CR50">50</xref>
].</p>
<p>Positively, the applied robot-supported intervention was overall experienced as motivational by all pwMS indicating the feasibility of applying haptic robots and virtual learning environments in clinical practice. With the lack of effects on group level, it seemed that it was too early to already apply a randomized controlled design [
<xref ref-type="bibr" rid="CR51">51</xref>
]. It is important to identify those pwMS that showed improvement on standard clinical tests. Similarly, it has to be investigated which improvement in daily life was experienced-perhaps even beyond their expectations-given their already long-standing chronic condition. Unfortunately, current sample size did not allow for statistical analyses in subgroups. Observation of the raw data indicated that especially pwMS with marked- to-severe upper limb function showed considerable improvement on the included clinical tests. As such, the robot-supported therapy may be most suitable for low-functioning pwMS, while high-functioning pwMS would benefit from other interventions encompassing hand function [
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR53">53</xref>
]. In this context, it is important to include qualitative measures on perception. Case testimonials especially from pwMS with marked to severe upper limb dysfunction indicated that some pwMS were able to perform (simultaneous bilateral) movements with less efforts and for a longer time, as reflected in the stories on continued wheelchair driving, full meal eating and email writing. These testimonials may suggest that robot-supported training, including many active movement repetitions within one training session, improves muscle endurance and therefore capacity to continue functional movements longer. Future research should therefore consider the inclusion of objective outcome measures regarding muscle endurance. It is also advised to add accelerometry for the measurement of the actual upper limb performance in daily life [
<xref ref-type="bibr" rid="CR49">49</xref>
]. It is conceivable that improved muscle endurance leads to more intensive use of the upper limbs in daily life despite that there was no improvement in maximal muscle strength. Daily life use of the upper limb does also relate to fine motor dexterity [
<xref ref-type="bibr" rid="CR49">49</xref>
]. Unfortunately, also impeding comparison of effects between studies, we had not included the Nine Hole Peg Test in our test battery as our robot-supported training did not include hand movements. It is acknowledged that previous research has shown the possibility of carry-over of proximal arm training to distal hand function [
<xref ref-type="bibr" rid="CR16">16</xref>
]. Finally, we have observed different responses to our treatment. In order to better identify responders to the training intervention, details of the training content, volume and intensity level should be documented in more detail in future and well-powered studies. As well, addition of neuro-imaging would allow to better understand whether changes are related to training counteracting disuse or to structural neuroplasticity.</p>
<p>The present study was executed with a custom-built I-TRAVLE system that is still in further development. It was mentioned above that an interactive hand module should optimally be added to incorporate hand function during serious gaming. Further recommendations are related to training intensity. Perhaps the 30 min of training per session, which is including start-up and navigation through the virtual learning environment between games, was too short. Moreover, out of protectiveness towards pwMS, the increase of difficulty levels by the therapist may have been too slow. Therefore, our research is currently addressing adaptive systems which would also support full autonomous training with I-TRAVLE [
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
]. The HapticMaster, with its potential to provide anti-gravity support, proprioceptive feedback on the optimal trajectory as well as of the virtual environment, allows for sensory integration. Which is believed to resemble real life to a larger extent than pure visual virtual environments. However, the robot-assisted approach with haptic and visual feedback may be mostly indicated for pwMS with severe arm dysfunction who are yet unable to perform successfully activities in real life. Other interfacing technologies, of which lightweight sensor-based technologies and camera-based approaches are well-known examples, may be more appropriate for pwMS with high functioning upper limbs.</p>
</sec>
<sec id="Sec11" sec-type="conclusions">
<title>Conclusion</title>
<p>Robot-supported training in a personalized virtual learning environment was feasible and lead to significant changes in motor function in highly disabled pwMS. However, this was on group level, not reflected by significant changes on standard clinical tests, which include hand function. Persons with marked upper limb dysfunction may clinically benefit most from additional robot-supported training. Larger samples are needed to further investigate the optimal training dosage and modalities in order to maximize effects.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>PF participated in the design of the study, interpreted the data, drafted the manuscript and revised it. KC has made substantial contributions to conception and design, helped to draft the manuscript and revised it. LK recruited at the Rehabilitation & MS Center in Overpelt, carried out the training protocol and collected the data. TDW helped in conducting the training protocol at the rehabilitation center in terms of technical support. VT participated in the design of the study and coordination. AM performed the statistical analysis and interpretation of data and helped to revise the manuscript. IL participated in the design and helped to revise the manuscript critically for important intellectual content. All authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>All pwMS are acknowledged for their participation, as well as all partners involved in the development of the I-TRAVLE system (Adelante Knowledge Center Hoensbroek, The Netherlands; Rehabilitation Center Blixembosch Eindhoven, the Netherlands; Technical University Eindhoven, the Netherlands). Geert Alders is acknowledged for study coordination and testing of pwMS. We thank Vicky Minten for assistance in data processing.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Motl</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>McAuley</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Snook</surname>
<given-names>EM</given-names>
</name>
</person-group>
<article-title>Physical activity and multiple sclerosis: a meta-analysis</article-title>
<source>Mult Scler</source>
<year>2005</year>
<volume>11</volume>
<issue>4</issue>
<fpage>459</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1191/1352458505ms1188oa</pub-id>
<pub-id pub-id-type="pmid">16042230</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stuifbergen</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Blozis</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Exercise, functional limitations, and quality of life: A longitudinal study of persons with multiple sclerosis</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2006</year>
<volume>87</volume>
<issue>7</issue>
<fpage>935</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/j.apmr.2006.04.003</pub-id>
<pub-id pub-id-type="pmid">16813781</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Latimer-Cheung</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Pilutti</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Martin Ginis</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Fenuta</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>MacKibbon</surname>
<given-names>KA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2013</year>
<volume>94</volume>
<issue>9</issue>
<fpage>1800</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1016/j.apmr.2013.04.020</pub-id>
<pub-id pub-id-type="pmid">23669008</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dalgas</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Stenager</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ingemann-Hansen</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Multiple sclerosis and physical exercise: recommendations for the application of resistance-, endurance and combined training</article-title>
<source>Mult Scler</source>
<year>2008</year>
<volume>14</volume>
<issue>1</issue>
<fpage>35</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1177/1352458507079445</pub-id>
<pub-id pub-id-type="pmid">17881393</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<mixed-citation publication-type="other">Snook EM, Motl RW. Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis. Neurorehabil Neural Repair. 2009;23(2):108–16.</mixed-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heesen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bohm</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kasper</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Goebel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gold</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable</article-title>
<source>Mult Scler</source>
<year>2008</year>
<volume>14</volume>
<issue>7</issue>
<fpage>988</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1177/1352458508088916</pub-id>
<pub-id pub-id-type="pmid">18505775</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kierkegaard</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Einarsson</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Gottberg</surname>
<given-names>K</given-names>
</name>
<name>
<surname>von Koch</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Holmqvist</surname>
<given-names>LW</given-names>
</name>
</person-group>
<article-title>The relationship between walking, manual dexterity, cognition and activity/participation in persons with multiple sclerosis</article-title>
<source>Mult Scler</source>
<year>2012</year>
<volume>18</volume>
<issue>5</issue>
<fpage>639</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1177/1352458511426736</pub-id>
<pub-id pub-id-type="pmid">21982871</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johansson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ytterberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Claesson</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Lindberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hillert</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High concurrent presence of disability in multiple sclerosis. Associations with perceived health</article-title>
<source>J Neurol</source>
<year>2007</year>
<volume>254</volume>
<issue>6</issue>
<fpage>767</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1007/s00415-006-0431-5</pub-id>
<pub-id pub-id-type="pmid">17401746</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spooren</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Timmermans</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Seelen</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Motor training programs of arm and hand in patients with MS according to different levels of the ICF: a systematic review</article-title>
<source>BMC Neurol</source>
<year>2012</year>
<volume>12</volume>
<fpage>49</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2377-12-49</pub-id>
<pub-id pub-id-type="pmid">22747894</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Dodd</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Denisenko</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Progressive resistance exercise for people with multiple sclerosis</article-title>
<source>Disabil Rehabil</source>
<year>2006</year>
<volume>28</volume>
<issue>18</issue>
<fpage>1119</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1080/09638280500531834</pub-id>
<pub-id pub-id-type="pmid">16966232</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Virtanen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ruutiainen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Aunola</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Karppi</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Vaara</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of a 6-month exercise program on patients with multiple sclerosis: a randomized study</article-title>
<source>Neurology</source>
<year>2004</year>
<volume>63</volume>
<issue>11</issue>
<fpage>2034</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1212/01.WNL.0000145761.38400.65</pub-id>
<pub-id pub-id-type="pmid">15596746</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Walters</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ingram</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Slade</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hobart</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zajicek</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Evaluating change in mobility in people with multiple sclerosis: relative responsiveness of four clinical measures</article-title>
<source>Mult Scler</source>
<year>2013</year>
<volume>19</volume>
<issue>12</issue>
<fpage>1632</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1177/1352458513482373</pub-id>
<pub-id pub-id-type="pmid">23530002</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Turner-Stokes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kilpatrick</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Multidisciplinary rehabilitation for adults with multiple sclerosis</article-title>
<source>Cochrane Database Syst Rev</source>
<year>2007</year>
<volume>2</volume>
<pub-id pub-id-type="pmid">17443610</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Guarino</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Haselkorn</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Wittenberg</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Federman</surname>
<given-names>DG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Robot-assisted therapy for long-term upper-limb impairment after stroke</article-title>
<source>N Engl J Med</source>
<year>2010</year>
<volume>362</volume>
<issue>19</issue>
<fpage>1772</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa0911341</pub-id>
<pub-id pub-id-type="pmid">20400552</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<mixed-citation publication-type="other">Mehrholz J, Hädrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012;13:6.CD006876. doi:10.1002/14651858.CD006876.pub3.</mixed-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gijbels</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lamers</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kerkhofs</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Alders</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Knippenberg</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study</article-title>
<source>J Neuroeng Rehabil</source>
<year>2011</year>
<volume>8</volume>
<fpage>5</fpage>
<pub-id pub-id-type="doi">10.1186/1743-0003-8-5</pub-id>
<pub-id pub-id-type="pmid">21261965</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehrholz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hadrich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Platz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kugler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pohl</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke</article-title>
<source>Cochrane Database Syst Rev</source>
<year>2012</year>
<volume>6</volume>
<fpage>Cd006876</fpage>
<pub-id pub-id-type="pmid">22696362</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casadio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sanguineti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Solaro</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability</article-title>
<source>Mult Scler</source>
<year>2008</year>
<volume>14</volume>
<issue>3</issue>
<fpage>330</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1177/1352458507085068</pub-id>
<pub-id pub-id-type="pmid">18208874</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpinella</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Cattaneo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Abuarqub</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferrarin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results</article-title>
<source>J Rehabil Med</source>
<year>2009</year>
<volume>41</volume>
<issue>12</issue>
<fpage>966</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.2340/16501977-0401</pub-id>
<pub-id pub-id-type="pmid">19841825</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpinella</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Cattaneo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bertoni</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ferrarin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2012</year>
<volume>20</volume>
<issue>3</issue>
<fpage>351</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1109/TNSRE.2012.2187462</pub-id>
<pub-id pub-id-type="pmid">22623407</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lohse</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Hilderman</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Tatla</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Van der Loos</surname>
<given-names>HF</given-names>
</name>
</person-group>
<article-title>Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>3</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0093318</pub-id>
<pub-id pub-id-type="pmid">24681826</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laver</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>George</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Deutsch</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Crotty</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Virtual reality for stroke rehabilitation</article-title>
<source>Cochrane Database Syst Rev</source>
<year>2015</year>
<volume>2</volume>
<fpage>Cd008349</fpage>
<pub-id pub-id-type="pmid">25927099</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lozano-Quilis</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gil-Gomez</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gil-Gomez</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Albiol-Perez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Palacios-Navarro</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fardoun</surname>
<given-names>HM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial</article-title>
<source>JMIR Serious Games</source>
<year>2014</year>
<volume>2</volume>
<issue>2</issue>
<fpage>e12</fpage>
<pub-id pub-id-type="doi">10.2196/games.2933</pub-id>
<pub-id pub-id-type="pmid">25654242</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<mixed-citation publication-type="other">Taylor M, Griffin M. The use of gaming technology for rehabilitation in people with multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England). 2014. doi:10.1177/1352458514563593.</mixed-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewis</surname>
<given-names>GN</given-names>
</name>
<name>
<surname>Rosie</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users?</article-title>
<source>Disabil Rehabil</source>
<year>2012</year>
<volume>34</volume>
<issue>22</issue>
<fpage>1880</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.3109/09638288.2012.670036</pub-id>
<pub-id pub-id-type="pmid">22480353</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewis</surname>
<given-names>GN</given-names>
</name>
<name>
<surname>Woods</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rosie</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>McPherson</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Virtual reality games for rehabilitation of people with stroke: perspectives from the users</article-title>
<source>Disabil Rehabil Assist Technol</source>
<year>2011</year>
<volume>6</volume>
<issue>5</issue>
<fpage>453</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.3109/17483107.2011.574310</pub-id>
<pub-id pub-id-type="pmid">21495917</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imam</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jarus</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population</article-title>
<source>Rehabil Res Pract</source>
<year>2014</year>
<volume>2014</volume>
<fpage>594540</fpage>
<pub-id pub-id-type="pmid">24523967</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermans</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Lemmens</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Monfrance</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Geers</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Bakx</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Smeets</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial</article-title>
<source>J Neuroeng Rehabil</source>
<year>2014</year>
<volume>11</volume>
<fpage>45</fpage>
<pub-id pub-id-type="doi">10.1186/1743-0003-11-45</pub-id>
<pub-id pub-id-type="pmid">24684808</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coote</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Harwin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Stokes</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke</article-title>
<source>Clin Rehabil</source>
<year>2008</year>
<volume>22</volume>
<issue>5</issue>
<fpage>395</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="doi">10.1177/0269215507085060</pub-id>
<pub-id pub-id-type="pmid">18441036</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bastiaens</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Alders</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Notelaers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Coninx</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kerkhofs</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Facilitating robot-assisted training in MS patients with arm paresis: a procedure to individually determine gravity compensation</article-title>
<source>IEEE Int Conf Rehabil Robot</source>
<year>2011</year>
<volume>2011</volume>
<fpage>5975507</fpage>
<pub-id pub-id-type="pmid">22275703</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krabben</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Prange</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Molier</surname>
<given-names>BI</given-names>
</name>
<name>
<surname>Stienen</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Jannink</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Buurke</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study</article-title>
<source>J Neuroeng Rehabil</source>
<year>2012</year>
<volume>9</volume>
<fpage>44</fpage>
<pub-id pub-id-type="doi">10.1186/1743-0003-9-44</pub-id>
<pub-id pub-id-type="pmid">22824488</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beer</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Holubar</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Dewald</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Impact of gravity loading on post-stroke reaching and its relationship to weakness</article-title>
<source>Muscle Nerve</source>
<year>2007</year>
<volume>36</volume>
<issue>2</issue>
<fpage>242</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1002/mus.20817</pub-id>
<pub-id pub-id-type="pmid">17486581</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Octavia</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Coninx</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Adaptive personalized training games for individual and collaborative rehabilitation of people with multiple sclerosis</article-title>
<source>Biomed Res Int</source>
<year>2014</year>
<volume>2014</volume>
<fpage>345728</fpage>
<pub-id pub-id-type="doi">10.1155/2014/345728</pub-id>
<pub-id pub-id-type="pmid">24982862</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>De Weyer</surname>
<given-names>TNS</given-names>
</name>
<name>
<surname>Coninx</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lamers</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Alders</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Geers</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Watering the flowers: virtual haptic environments for training of forearm rotation in persons with central nervous deficits</article-title>
<source>International Conference on Pervasive Technologies Related to Assistive Environments (PETRA)</source>
<year>2011</year>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Octavia</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Coninx</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>As I am not you: accomodating user diversity through adaptive rehabilitation training for multiple sclerosis patients</article-title>
<source>Australian Computer-Human Interaction Conference: “Integration, Interaction, Innovation, Immersion, Inclusion”</source>
<year>2012</year>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Notelaers</surname>
<given-names>SDWT</given-names>
</name>
<name>
<surname>Octavia</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Coninx</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Individualized training for MS- and stroke patients in I-TRAVLE</article-title>
<source>International Conference SKILLS</source>
<year>2011</year>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermans</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Seelen</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Willmann</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Bakx</surname>
<given-names>W</given-names>
</name>
<name>
<surname>de Ruyter</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lanfermann</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Arm and hand skills: training preferences after stroke</article-title>
<source>Disabil Rehabil</source>
<year>2009</year>
<volume>31</volume>
<issue>16</issue>
<fpage>1344</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1080/09638280902823664</pub-id>
<pub-id pub-id-type="pmid">19479535</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Croarkin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Danoff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Evidence-based rating of upper-extremity motor function tests used for people following a stroke</article-title>
<source>Phys Ther</source>
<year>2004</year>
<volume>84</volume>
<issue>1</issue>
<fpage>62</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">14992677</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paltamaa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>West</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sarasoja</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wikstrom</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Malkia</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Reliability of physical functioning measures in ambulatory subjects with MS</article-title>
<source>Physiother Res Int</source>
<year>2005</year>
<volume>10</volume>
<issue>2</issue>
<fpage>93</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1002/pri.30</pub-id>
<pub-id pub-id-type="pmid">16146327</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Platz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pinkowski</surname>
<given-names>C</given-names>
</name>
<name>
<surname>van Wijck</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>IH</given-names>
</name>
<name>
<surname>di Bella</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study</article-title>
<source>Clin Rehabil</source>
<year>2005</year>
<volume>19</volume>
<issue>4</issue>
<fpage>404</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1191/0269215505cr832oa</pub-id>
<pub-id pub-id-type="pmid">15929509</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<mixed-citation publication-type="other">Lamers I, Timmermans AA, Kerkhofs L, Severijns D, Van WB, Feys P. Self-reported use of the upper limbs related to clinical tests in persons with multiple sclerosis. Disabil Rehabil. 2013;35(23)2016–20.</mixed-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pantano</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mainero</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Caramia</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Functional brain reorganization in multiple sclerosis: evidence from fMRI studies</article-title>
<source>J Neuroimaging</source>
<year>2006</year>
<volume>16</volume>
<issue>2</issue>
<fpage>104</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1111/j.1552-6569.2006.00029.x</pub-id>
<pub-id pub-id-type="pmid">16629730</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomassini</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Johansen-Berg</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Leonardi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Paixao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jbabdi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Palace</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preservation of motor skill learning in patients with multiple sclerosis</article-title>
<source>Mult Scler</source>
<year>2011</year>
<volume>17</volume>
<issue>1</issue>
<fpage>103</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1177/1352458510381257</pub-id>
<pub-id pub-id-type="pmid">20834040</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomassini</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Johansen-Berg</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jbabdi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wise</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Pozzilli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Palace</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Relating brain damage to brain plasticity in patients with multiple sclerosis</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2012</year>
<volume>26</volume>
<issue>6</issue>
<fpage>581</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1177/1545968311433208</pub-id>
<pub-id pub-id-type="pmid">22328685</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<mixed-citation publication-type="other">Sampson, P., Freeman, C., Coote, S., Demain, S., Feys, P., Meadmore, K., & Hughes, A. M. (2015). Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis. IEEE Trans Neural Syst Rehabil Eng. Epublication ahead of print.</mixed-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<mixed-citation publication-type="other">Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil. 2011;24(8):5.</mixed-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Housman</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2009</year>
<volume>23</volume>
<issue>5</issue>
<fpage>505</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1177/1545968308331148</pub-id>
<pub-id pub-id-type="pmid">19237734</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>WY</given-names>
</name>
</person-group>
<article-title>Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial</article-title>
<source>Clin Rehabil</source>
<year>2012</year>
<volume>26</volume>
<issue>2</issue>
<fpage>111</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1177/0269215511416383</pub-id>
<pub-id pub-id-type="pmid">21840917</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamers</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kerkhofs</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Raats</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Van</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Perceived and actual arm performance in multiple sclerosis: relationship with clinical tests according to hand dominance</article-title>
<source>Mult Scler</source>
<year>2013</year>
<volume>19</volume>
<issue>10</issue>
<fpage>1341</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1177/1352458513475832</pub-id>
<pub-id pub-id-type="pmid">23407701</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermans</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Seelen</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Willmann</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Kingma</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design</article-title>
<source>J Neuroeng Rehabil</source>
<year>2009</year>
<volume>6</volume>
<fpage>1</fpage>
<pub-id pub-id-type="doi">10.1186/1743-0003-6-1</pub-id>
<pub-id pub-id-type="pmid">19154570</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Clinical designs of recent robot rehabilitation trials</article-title>
<source>Am J Phys Med Rehabil</source>
<year>2012</year>
<volume>91</volume>
<issue>11 Suppl 3</issue>
<fpage>S204</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1097/PHM.0b013e31826bcfa3</pub-id>
<pub-id pub-id-type="pmid">23080037</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermans</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Spooren</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Kingma</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Seelen</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Influence of task-oriented training content on skilled arm-hand performance in stroke: a systematic review</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2010</year>
<volume>24</volume>
<issue>9</issue>
<fpage>858</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1177/1545968310368963</pub-id>
<pub-id pub-id-type="pmid">20921325</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brochard</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Medee</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Remy-Neris</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>What’s new in new technologies for upper extremity rehabilitation?</article-title>
<source>Curr Opin Neurol</source>
<year>2010</year>
<volume>23</volume>
<issue>6</issue>
<fpage>683</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1097/WCO.0b013e32833f61ce</pub-id>
<pub-id pub-id-type="pmid">20852420</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000846 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000846 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4511982
   |texte=   Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:26202325" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024