Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural computations governing spatiotemporal pooling of visual motion signals in humans

Identifieur interne : 001A73 ( Pmc/Checkpoint ); précédent : 001A72; suivant : 001A74

Neural computations governing spatiotemporal pooling of visual motion signals in humans

Auteurs : Ben S. Webb ; Timothy Ledgeway ; Francesca Rocchi

Source :

RBID : PMC:3461496

Abstract

The brain estimates visual motion by decoding the responses of populations of neurons. Extracting unbiased motion estimates from early visual cortical neurons is challenging because each neuron contributes an ambiguous (local) representation of the visual environment and inherently variable neural response. To mitigate these sources of noise, the brain can pool across large populations of neurons, pool each neuron’s response over time, or a combination of the two. Recent psychophysical and physiological work points to a flexible motion pooling system which arrives at different computational solutions over time and for different stimuli. Here we ask whether a single, likelihood-based computation can accommodate the flexible nature of spatiotemporal motion pooling in humans. We examined the contribution of different computations to human observers’ performance on two global visual motion discriminations tasks, one requiring the combination of motion directions over time, another requiring their combination in different relative proportions over space and time. Observers’ perceived direction of global motion was accurately predicted by a vector average read-out of direction signals accumulated over time and a maximum likelihood read-out of direction signals combined over space, consistent with the notion of a flexible motion pooling system that uses different computations over space and time. Further simulations of observers’ performance with a population decoding model revealed a more parsimonious solution: flexible spatiotemporal pooling could be accommodated by a single computation that optimally pools motion signals across a population of neurons which accumulate local motion signals on their receptive fields at a fixed rate over time.


Url:
DOI: 10.1523/JNEUROSCI.6185-10.2011
PubMed: 21451030
PubMed Central: 3461496


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3461496

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neural computations governing spatiotemporal pooling of visual motion signals in humans</title>
<author>
<name sortKey="Webb, Ben S" sort="Webb, Ben S" uniqKey="Webb B" first="Ben S." last="Webb">Ben S. Webb</name>
</author>
<author>
<name sortKey="Ledgeway, Timothy" sort="Ledgeway, Timothy" uniqKey="Ledgeway T" first="Timothy" last="Ledgeway">Timothy Ledgeway</name>
</author>
<author>
<name sortKey="Rocchi, Francesca" sort="Rocchi, Francesca" uniqKey="Rocchi F" first="Francesca" last="Rocchi">Francesca Rocchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21451030</idno>
<idno type="pmc">3461496</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461496</idno>
<idno type="RBID">PMC:3461496</idno>
<idno type="doi">10.1523/JNEUROSCI.6185-10.2011</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001972</idno>
<idno type="wicri:Area/Pmc/Curation">001972</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001A73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Neural computations governing spatiotemporal pooling of visual motion signals in humans</title>
<author>
<name sortKey="Webb, Ben S" sort="Webb, Ben S" uniqKey="Webb B" first="Ben S." last="Webb">Ben S. Webb</name>
</author>
<author>
<name sortKey="Ledgeway, Timothy" sort="Ledgeway, Timothy" uniqKey="Ledgeway T" first="Timothy" last="Ledgeway">Timothy Ledgeway</name>
</author>
<author>
<name sortKey="Rocchi, Francesca" sort="Rocchi, Francesca" uniqKey="Rocchi F" first="Francesca" last="Rocchi">Francesca Rocchi</name>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="ISSN">0270-6474</idno>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">The brain estimates visual motion by decoding the responses of populations of neurons. Extracting unbiased motion estimates from early visual cortical neurons is challenging because each neuron contributes an ambiguous (local) representation of the visual environment and inherently variable neural response. To mitigate these sources of noise, the brain can pool across large populations of neurons, pool each neuron’s response over time, or a combination of the two. Recent psychophysical and physiological work points to a flexible motion pooling system which arrives at different computational solutions over time and for different stimuli. Here we ask whether a single, likelihood-based computation can accommodate the flexible nature of spatiotemporal motion pooling in humans. We examined the contribution of different computations to human observers’ performance on two global visual motion discriminations tasks, one requiring the combination of motion directions over time, another requiring their combination in different relative proportions over space and time. Observers’ perceived direction of global motion was accurately predicted by a vector average read-out of direction signals accumulated over time and a maximum likelihood read-out of direction signals combined over space, consistent with the notion of a flexible motion pooling system that uses different computations over space and time. Further simulations of observers’ performance with a population decoding model revealed a more parsimonious solution: flexible spatiotemporal pooling could be accommodated by a single computation that optimally pools motion signals across a population of neurons which accumulate local motion signals on their receptive fields at a fixed rate over time.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8102140</journal-id>
<journal-id journal-id-type="pubmed-jr-id">5035</journal-id>
<journal-id journal-id-type="nlm-ta">J Neurosci</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurosci.</journal-id>
<journal-title-group>
<journal-title>The Journal of neuroscience : the official journal of the Society for Neuroscience</journal-title>
</journal-title-group>
<issn pub-type="ppub">0270-6474</issn>
<issn pub-type="epub">1529-2401</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21451030</article-id>
<article-id pub-id-type="pmc">3461496</article-id>
<article-id pub-id-type="doi">10.1523/JNEUROSCI.6185-10.2011</article-id>
<article-id pub-id-type="manuscript">UKMS35037</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Neural computations governing spatiotemporal pooling of visual motion signals in humans</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Webb</surname>
<given-names>Ben S.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ledgeway</surname>
<given-names>Timothy</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rocchi</surname>
<given-names>Francesca</given-names>
</name>
</contrib>
<aff id="A1">School of Psychology, University of Nottingham, NG7 2RD</aff>
</contrib-group>
<author-notes>
<corresp id="CR1">Correspondence: Ben Webb, Visual Neuroscience Group, School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, UK. Tel. +44(0)1159515328, Fax. +44(0)1159515328,
<email>bsw@psychology.nottingham.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>1</day>
<month>8</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="ppub">
<day>30</day>
<month>3</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>10</month>
<year>2012</year>
</pub-date>
<volume>31</volume>
<issue>13</issue>
<fpage>4917</fpage>
<lpage>4925</lpage>
<abstract>
<p id="P1">The brain estimates visual motion by decoding the responses of populations of neurons. Extracting unbiased motion estimates from early visual cortical neurons is challenging because each neuron contributes an ambiguous (local) representation of the visual environment and inherently variable neural response. To mitigate these sources of noise, the brain can pool across large populations of neurons, pool each neuron’s response over time, or a combination of the two. Recent psychophysical and physiological work points to a flexible motion pooling system which arrives at different computational solutions over time and for different stimuli. Here we ask whether a single, likelihood-based computation can accommodate the flexible nature of spatiotemporal motion pooling in humans. We examined the contribution of different computations to human observers’ performance on two global visual motion discriminations tasks, one requiring the combination of motion directions over time, another requiring their combination in different relative proportions over space and time. Observers’ perceived direction of global motion was accurately predicted by a vector average read-out of direction signals accumulated over time and a maximum likelihood read-out of direction signals combined over space, consistent with the notion of a flexible motion pooling system that uses different computations over space and time. Further simulations of observers’ performance with a population decoding model revealed a more parsimonious solution: flexible spatiotemporal pooling could be accommodated by a single computation that optimally pools motion signals across a population of neurons which accumulate local motion signals on their receptive fields at a fixed rate over time.</p>
</abstract>
<kwd-group>
<kwd>population decoding</kwd>
<kwd>visual motion</kwd>
<kwd>pooling</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source country="United Kingdom">Wellcome Trust : </funding-source>
<award-id>085222 || WT</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ledgeway, Timothy" sort="Ledgeway, Timothy" uniqKey="Ledgeway T" first="Timothy" last="Ledgeway">Timothy Ledgeway</name>
<name sortKey="Rocchi, Francesca" sort="Rocchi, Francesca" uniqKey="Rocchi F" first="Francesca" last="Rocchi">Francesca Rocchi</name>
<name sortKey="Webb, Ben S" sort="Webb, Ben S" uniqKey="Webb B" first="Ben S." last="Webb">Ben S. Webb</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001A73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3461496
   |texte=   Neural computations governing spatiotemporal pooling of visual motion signals in humans
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:21451030" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024