Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing

Identifieur interne : 000654 ( Pmc/Checkpoint ); précédent : 000653; suivant : 000655

Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing

Auteurs : Sean J. Mccafferty ; Jim T. Schwiegerling

Source :

RBID : PMC:4413924

Abstract

Purpose:

Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface.

Methods:

The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate.

Results:

The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus.

Conclusions:

The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens.

Translational Relevance:

The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.


Url:
DOI: 10.1167/tvst.4.2.17
PubMed: 25938005
PubMed Central: 4413924


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4413924

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing</title>
<author>
<name sortKey="Mccafferty, Sean J" sort="Mccafferty, Sean J" uniqKey="Mccafferty S" first="Sean J." last="Mccafferty">Sean J. Mccafferty</name>
<affiliation>
<nlm:aff id="aff1">Intuor Technologies - CEO; Arizona Eye Consultants - Partner; University of Arizona Department of Ophthalmology Clinical Assistant Professor; University of Arizona College of Optical Science</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwiegerling, Jim T" sort="Schwiegerling, Jim T" uniqKey="Schwiegerling J" first="Jim T." last="Schwiegerling">Jim T. Schwiegerling</name>
<affiliation>
<nlm:aff id="aff2">Jim Schwiegerling affiliations: University of Arizona College of Optical Science - Professor; University of Arizona Department of Ophthalmology</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25938005</idno>
<idno type="pmc">4413924</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413924</idno>
<idno type="RBID">PMC:4413924</idno>
<idno type="doi">10.1167/tvst.4.2.17</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000135</idno>
<idno type="wicri:Area/Pmc/Curation">000135</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000654</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing</title>
<author>
<name sortKey="Mccafferty, Sean J" sort="Mccafferty, Sean J" uniqKey="Mccafferty S" first="Sean J." last="Mccafferty">Sean J. Mccafferty</name>
<affiliation>
<nlm:aff id="aff1">Intuor Technologies - CEO; Arizona Eye Consultants - Partner; University of Arizona Department of Ophthalmology Clinical Assistant Professor; University of Arizona College of Optical Science</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwiegerling, Jim T" sort="Schwiegerling, Jim T" uniqKey="Schwiegerling J" first="Jim T." last="Schwiegerling">Jim T. Schwiegerling</name>
<affiliation>
<nlm:aff id="aff2">Jim Schwiegerling affiliations: University of Arizona College of Optical Science - Professor; University of Arizona Department of Ophthalmology</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Translational Vision Science & Technology</title>
<idno type="eISSN">2164-2591</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Purpose:</title>
<p>Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface.</p>
</sec>
<sec id="st2">
<title>Methods:</title>
<p>The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate.</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus.</p>
</sec>
<sec id="st4">
<title>Conclusions:</title>
<p>The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens.</p>
</sec>
<sec id="st5">
<title>Translational Relevance:</title>
<p>The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.</p>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Transl Vis Sci Technol</journal-id>
<journal-id journal-id-type="iso-abbrev">Transl Vis Sci Technol</journal-id>
<journal-id journal-id-type="publisher-id">tvst</journal-id>
<journal-title-group>
<journal-title>Translational Vision Science & Technology</journal-title>
</journal-title-group>
<issn pub-type="epub">2164-2591</issn>
<publisher>
<publisher-name>The Association for Research in Vision and Ophthalmology</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25938005</article-id>
<article-id pub-id-type="pmc">4413924</article-id>
<article-id pub-id-type="doi">10.1167/tvst.4.2.17</article-id>
<article-id pub-id-type="sici">tvst-04-02-16</article-id>
<article-id pub-id-type="publisher-id">MS#: TVST-14-0147</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>McCafferty</surname>
<given-names>Sean J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schwiegerling</surname>
<given-names>Jim T.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<aff id="aff1">
<label>1</label>
Intuor Technologies - CEO; Arizona Eye Consultants - Partner; University of Arizona Department of Ophthalmology Clinical Assistant Professor; University of Arizona College of Optical Science</aff>
<aff id="aff2">
<label>2</label>
Jim Schwiegerling affiliations: University of Arizona College of Optical Science - Professor; University of Arizona Department of Ophthalmology</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<bold>Correspondence:</bold>
Sean J. McCafferty, 6422 E Speedway Avenue, Tucson, AZ 85710. e-mail: sjmccafferty66@hotmail.com</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>28</day>
<month>4</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<month>4</month>
<year>2015</year>
</pub-date>
<volume>4</volume>
<issue>2</issue>
<elocation-id>17</elocation-id>
<history>
<date date-type="received">
<day>5</day>
<month>9</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>3</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.</copyright-statement>
<copyright-year>2015</copyright-year>
</permissions>
<abstract>
<sec id="st1">
<title>Purpose:</title>
<p>Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface.</p>
</sec>
<sec id="st2">
<title>Methods:</title>
<p>The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate.</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus.</p>
</sec>
<sec id="st4">
<title>Conclusions:</title>
<p>The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens.</p>
</sec>
<sec id="st5">
<title>Translational Relevance:</title>
<p>The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.</p>
</sec>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>accommodation</kwd>
<kwd>cataract surgery</kwd>
<kwd>lens</kwd>
<kwd>optics</kwd>
<kwd>physiological optics</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Mccafferty, Sean J" sort="Mccafferty, Sean J" uniqKey="Mccafferty S" first="Sean J." last="Mccafferty">Sean J. Mccafferty</name>
<name sortKey="Schwiegerling, Jim T" sort="Schwiegerling, Jim T" uniqKey="Schwiegerling J" first="Jim T." last="Schwiegerling">Jim T. Schwiegerling</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000654 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000654 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4413924
   |texte=   Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:25938005" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024