Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of robotically modulating kinematic variability on motor skill learning and motivation

Identifieur interne : 000604 ( Pmc/Checkpoint ); précédent : 000603; suivant : 000605

Effects of robotically modulating kinematic variability on motor skill learning and motivation

Auteurs : Jaime E. Duarte [États-Unis] ; David J. Reinkensmeyer [États-Unis]

Source :

RBID : PMC:4416588

Abstract

It is unclear how the variability of kinematic errors experienced during motor training affects skill retention and motivation. We used force fields produced by a haptic robot to modulate the kinematic errors of 30 healthy adults during a period of practice in a virtual simulation of golf putting. On day 1, participants became relatively skilled at putting to a near and far target by first practicing without force fields. On day 2, they warmed up at the task without force fields, then practiced with force fields that either reduced or augmented their kinematic errors and were finally assessed without the force fields active. On day 3, they returned for a long-term assessment, again without force fields. A control group practiced without force fields. We quantified motor skill as the variability in impact velocity at which participants putted the ball. We quantified motivation using a self-reported, standardized scale. Only individuals who were initially less skilled benefited from training; for these people, practicing with reduced kinematic variability improved skill more than practicing in the control condition. This reduced kinematic variability also improved self-reports of competence and satisfaction. Practice with increased kinematic variability worsened these self-reports as well as enjoyment. These negative motivational effects persisted on day 3 in a way that was uncorrelated with actual skill. In summary, robotically reducing kinematic errors in a golf putting training session improved putting skill more for less skilled putters. Robotically increasing kinematic errors had no performance effect, but decreased motivation in a persistent way.


Url:
DOI: 10.1152/jn.00163.2014
PubMed: 25673732
PubMed Central: 4416588


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4416588

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of robotically modulating kinematic variability on motor skill learning and motivation</title>
<author>
<name sortKey="Duarte, Jaime E" sort="Duarte, Jaime E" uniqKey="Duarte J" first="Jaime E." last="Duarte">Jaime E. Duarte</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Mechanical and Aerospace Engineering, University of California, Irvine, California;</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical and Aerospace Engineering, University of California, Irvine</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J." last="Reinkensmeyer">David J. Reinkensmeyer</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Mechanical and Aerospace Engineering, University of California, Irvine, California;</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical and Aerospace Engineering, University of California, Irvine</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff2">Department of Biomedical Engineering, University of California, Irvine, California</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of California, Irvine</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff3">Department of Anatomy and Neurobiology, University of California, Irvine, California</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Anatomy and Neurobiology, University of California, Irvine</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25673732</idno>
<idno type="pmc">4416588</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416588</idno>
<idno type="RBID">PMC:4416588</idno>
<idno type="doi">10.1152/jn.00163.2014</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000108</idno>
<idno type="wicri:Area/Pmc/Curation">000108</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000604</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Effects of robotically modulating kinematic variability on motor skill learning and motivation</title>
<author>
<name sortKey="Duarte, Jaime E" sort="Duarte, Jaime E" uniqKey="Duarte J" first="Jaime E." last="Duarte">Jaime E. Duarte</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Mechanical and Aerospace Engineering, University of California, Irvine, California;</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical and Aerospace Engineering, University of California, Irvine</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J." last="Reinkensmeyer">David J. Reinkensmeyer</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Mechanical and Aerospace Engineering, University of California, Irvine, California;</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical and Aerospace Engineering, University of California, Irvine</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff2">Department of Biomedical Engineering, University of California, Irvine, California</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of California, Irvine</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff3">Department of Anatomy and Neurobiology, University of California, Irvine, California</nlm:aff>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Anatomy and Neurobiology, University of California, Irvine</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Neurophysiology</title>
<idno type="ISSN">0022-3077</idno>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>It is unclear how the variability of kinematic errors experienced during motor training affects skill retention and motivation. We used force fields produced by a haptic robot to modulate the kinematic errors of 30 healthy adults during a period of practice in a virtual simulation of golf putting. On
<italic>day 1</italic>
, participants became relatively skilled at putting to a near and far target by first practicing without force fields. On
<italic>day 2</italic>
, they warmed up at the task without force fields, then practiced with force fields that either reduced or augmented their kinematic errors and were finally assessed without the force fields active. On
<italic>day 3</italic>
, they returned for a long-term assessment, again without force fields. A control group practiced without force fields. We quantified motor skill as the variability in impact velocity at which participants putted the ball. We quantified motivation using a self-reported, standardized scale. Only individuals who were initially less skilled benefited from training; for these people, practicing with reduced kinematic variability improved skill more than practicing in the control condition. This reduced kinematic variability also improved self-reports of competence and satisfaction. Practice with increased kinematic variability worsened these self-reports as well as enjoyment. These negative motivational effects persisted on
<italic>day 3</italic>
in a way that was uncorrelated with actual skill. In summary, robotically reducing kinematic errors in a golf putting training session improved putting skill more for less skilled putters. Robotically increasing kinematic errors had no performance effect, but decreased motivation in a persistent way.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurophysiol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurophysiol</journal-id>
<journal-id journal-id-type="hwp">jn</journal-id>
<journal-id journal-id-type="pmc">jn</journal-id>
<journal-id journal-id-type="publisher-id">JN</journal-id>
<journal-title-group>
<journal-title>Journal of Neurophysiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-3077</issn>
<issn pub-type="epub">1522-1598</issn>
<publisher>
<publisher-name>American Physiological Society</publisher-name>
<publisher-loc>Bethesda, MD</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25673732</article-id>
<article-id pub-id-type="pmc">4416588</article-id>
<article-id pub-id-type="publisher-id">JN-00163-2014</article-id>
<article-id pub-id-type="doi">10.1152/jn.00163.2014</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Control of Movement</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Effects of robotically modulating kinematic variability on motor skill learning and motivation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Duarte</surname>
<given-names>Jaime E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reinkensmeyer</surname>
<given-names>David J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Department of Mechanical and Aerospace Engineering, University of California, Irvine, California;</aff>
<aff id="aff2">
<sup>2</sup>
Department of Biomedical Engineering, University of California, Irvine, California; and</aff>
<aff id="aff3">
<sup>3</sup>
Department of Anatomy and Neurobiology, University of California, Irvine, California</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Address for reprint requests and other correspondence: J. E. Duarte,
<addr-line>Univ. of California, Irvine, 3151 Engineering Gateway, Irvine, CA 92697</addr-line>
(e-mail:
<email>jeduarte@uci.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>11</day>
<month>2</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>4</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>4</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 12 months and 0 days and was based on the . </pmc-comment>
<volume>113</volume>
<issue>7</issue>
<fpage>2682</fpage>
<lpage>2691</lpage>
<history>
<date date-type="received">
<day>26</day>
<month>2</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>2</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 the American Physiological Society</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>American Physiological Society</copyright-holder>
</permissions>
<self-uri content-type="pdf" xlink:href="z9k00715002682.pdf"></self-uri>
<abstract>
<p>It is unclear how the variability of kinematic errors experienced during motor training affects skill retention and motivation. We used force fields produced by a haptic robot to modulate the kinematic errors of 30 healthy adults during a period of practice in a virtual simulation of golf putting. On
<italic>day 1</italic>
, participants became relatively skilled at putting to a near and far target by first practicing without force fields. On
<italic>day 2</italic>
, they warmed up at the task without force fields, then practiced with force fields that either reduced or augmented their kinematic errors and were finally assessed without the force fields active. On
<italic>day 3</italic>
, they returned for a long-term assessment, again without force fields. A control group practiced without force fields. We quantified motor skill as the variability in impact velocity at which participants putted the ball. We quantified motivation using a self-reported, standardized scale. Only individuals who were initially less skilled benefited from training; for these people, practicing with reduced kinematic variability improved skill more than practicing in the control condition. This reduced kinematic variability also improved self-reports of competence and satisfaction. Practice with increased kinematic variability worsened these self-reports as well as enjoyment. These negative motivational effects persisted on
<italic>day 3</italic>
in a way that was uncorrelated with actual skill. In summary, robotically reducing kinematic errors in a golf putting training session improved putting skill more for less skilled putters. Robotically increasing kinematic errors had no performance effect, but decreased motivation in a persistent way.</p>
</abstract>
<kwd-group>
<kwd>motor learning</kwd>
<kwd>motivation</kwd>
<kwd>movement variability</kwd>
<kwd>motor skill</kwd>
<kwd>robotic training</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Duarte, Jaime E" sort="Duarte, Jaime E" uniqKey="Duarte J" first="Jaime E." last="Duarte">Jaime E. Duarte</name>
</region>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J." last="Reinkensmeyer">David J. Reinkensmeyer</name>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J." last="Reinkensmeyer">David J. Reinkensmeyer</name>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J." last="Reinkensmeyer">David J. Reinkensmeyer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000604 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000604 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4416588
   |texte=   Effects of robotically modulating kinematic variability on motor skill learning and motivation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:25673732" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024