Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics

Identifieur interne : 000E50 ( PascalFrancis/Curation ); précédent : 000E49; suivant : 000E51

Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics

Auteurs : Ewoud Van West [Japon] ; Akio Yamamoto [Japon] ; Toshiro Higuchi [Japon]

Source :

RBID : Pascal:11-0092833

Descripteurs français

English descriptors

Abstract

Levitation techniques allow delicate objects, such as silicon wafers, to be manipulated without contact. In case of electrostatic and magnetic levitation, the object can be levitated by actively controlling the electric/magnetic field based on the measured air gap between the object and the levitator. Multiple degrees of freedom are controlled by several electric/magnetic actuators. For thin flat objects, the surface area is large enough for suspending the object in vertical direction, but the side surface is too small to realize active control for lateral motions. For stability, the levitation system relies on a passive lateral restoring force that will keep the object aligned with the levitator. The drawback of this passive force is that it is far weaker than the controlled suspension force. As a result, allowable accelerations in the horizontal plane have to be limited in a manipulation task to prevent loosing the object during motion. In this paper, a solution is proposed based on compensating the acceleration by Tilt Control. For both an electrostatic and a magnetic levitation system, the significant improvement of tolerance to lateral acceleration due to feedforward tilt control is presented. It is shown that not only for automated motion but also for human operated motion, the tilt control strategy is applicable. In the human operated motion, haptic technology such as the admittance control scheme, are used to realize satisfactory manipulation. Note to Practitioners-When levitation systems are used for transporting objects without contact, there is a practical problem that objects may be lost (dropped) if planar accelerations are too high, because the lateral holding force in these systems is very weak. This paper proposes a solution in which the object and its levitator are tilted so that a part of the stronger levitation force is also used to compensate for these planar accelerations. Tilting angles are realized directly based on the acceleration of the moving actuator, so that measurement of the relative lateral position with a feedback tilt control is not necessary. While it increases the complexity of the levitator since a tilting mechanism is needed, fast noncontact manipulation can be realized.
pA  
A01 01  1    @0 1545-5955
A03   1    @0 IEEE trans. autom. sci. eng.
A05       @2 7
A06       @2 3
A08 01  1  ENG  @1 Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics
A11 01  1    @1 VAN WEST (Ewoud)
A11 02  1    @1 YAMAMOTO (Akio)
A11 03  1    @1 HIGUCHI (Toshiro)
A14 01      @1 Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo @2 Tokyo, 13-8656 @3 JPN @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @1 451-462
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 21023B @5 354000194728780040
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 44 ref.
A47 01  1    @0 11-0092833
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on automation science and engineering
A66 01      @0 USA
C01 01    ENG  @0 Levitation techniques allow delicate objects, such as silicon wafers, to be manipulated without contact. In case of electrostatic and magnetic levitation, the object can be levitated by actively controlling the electric/magnetic field based on the measured air gap between the object and the levitator. Multiple degrees of freedom are controlled by several electric/magnetic actuators. For thin flat objects, the surface area is large enough for suspending the object in vertical direction, but the side surface is too small to realize active control for lateral motions. For stability, the levitation system relies on a passive lateral restoring force that will keep the object aligned with the levitator. The drawback of this passive force is that it is far weaker than the controlled suspension force. As a result, allowable accelerations in the horizontal plane have to be limited in a manipulation task to prevent loosing the object during motion. In this paper, a solution is proposed based on compensating the acceleration by Tilt Control. For both an electrostatic and a magnetic levitation system, the significant improvement of tolerance to lateral acceleration due to feedforward tilt control is presented. It is shown that not only for automated motion but also for human operated motion, the tilt control strategy is applicable. In the human operated motion, haptic technology such as the admittance control scheme, are used to realize satisfactory manipulation. Note to Practitioners-When levitation systems are used for transporting objects without contact, there is a practical problem that objects may be lost (dropped) if planar accelerations are too high, because the lateral holding force in these systems is very weak. This paper proposes a solution in which the object and its levitator are tilted so that a part of the stronger levitation force is also used to compensate for these planar accelerations. Tilting angles are realized directly based on the acceleration of the moving actuator, so that measurement of the relative lateral position with a feedback tilt control is not necessary. While it increases the complexity of the levitator since a tilting mechanism is needed, fast noncontact manipulation can be realized.
C02 01  X    @0 001D03F17
C02 02  X    @0 001D05G01
C02 03  3    @0 001B00G07M
C02 04  X    @0 001D02D07
C03 01  X  FRE  @0 Manipulation @5 06
C03 01  X  ENG  @0 Manipulation @5 06
C03 01  X  SPA  @0 Manipulación @5 06
C03 02  X  FRE  @0 Lévitation électrostatique @5 07
C03 02  X  ENG  @0 Electrostatical levitation @5 07
C03 02  X  SPA  @0 Levitación electrostática @5 07
C03 03  X  FRE  @0 Inclinaison @5 08
C03 03  X  ENG  @0 Tilt @5 08
C03 03  X  SPA  @0 Inclinación @5 08
C03 04  X  FRE  @0 Dispositif magnétique @5 09
C03 04  X  ENG  @0 Magnetic device @5 09
C03 04  X  SPA  @0 Dispositivo magnético @5 09
C03 05  3  FRE  @0 Commande accélération @5 10
C03 05  3  ENG  @0 Acceleration control @5 10
C03 06  X  FRE  @0 Boucle anticipation @5 11
C03 06  X  ENG  @0 Feedforward @5 11
C03 06  X  SPA  @0 Ciclo anticipación @5 11
C03 07  X  FRE  @0 Synthèse commande @5 12
C03 07  X  ENG  @0 Control synthesis @5 12
C03 07  X  SPA  @0 Síntesis control @5 12
C03 08  X  FRE  @0 Angle inclinaison @5 18
C03 08  X  ENG  @0 Tilt angle @5 18
C03 08  X  SPA  @0 Angulo inclinación @5 18
C03 09  X  FRE  @0 Sensibilité tactile @5 19
C03 09  X  ENG  @0 Tactile sensitivity @5 19
C03 09  X  SPA  @0 Sensibilidad tactil @5 19
C03 10  X  FRE  @0 Force électrostatique @5 20
C03 10  X  ENG  @0 Electrostatic force @5 20
C03 10  X  SPA  @0 Fuerza electrostática @5 20
C03 11  X  FRE  @0 Lévitation magnétique @5 21
C03 11  X  ENG  @0 Magnetic levitation @5 21
C03 11  X  SPA  @0 Levitacíon magnetica @5 21
C03 12  X  FRE  @0 Suspension magnétique @5 22
C03 12  X  ENG  @0 Magnetic suspension @5 22
C03 12  X  SPA  @0 Suspensión magnética @5 22
C03 13  X  FRE  @0 Entrefer @5 23
C03 13  X  ENG  @0 Air gap @5 23
C03 13  X  SPA  @0 Entrehierro @5 23
C03 14  X  FRE  @0 Système n degrés liberté @5 24
C03 14  X  ENG  @0 System with n degrees of freedom @5 24
C03 14  X  SPA  @0 Sistema n grados libertad @5 24
C03 15  X  FRE  @0 Moteur électrique @5 25
C03 15  X  ENG  @0 Electric motor @5 25
C03 15  X  SPA  @0 Motor eléctrico @5 25
C03 16  X  FRE  @0 Système actif @5 26
C03 16  X  ENG  @0 Active system @5 26
C03 16  X  SPA  @0 Sistema activo @5 26
C03 17  X  FRE  @0 Commande mouvement @5 27
C03 17  X  ENG  @0 Motion control @5 27
C03 17  X  SPA  @0 Control movimiento @5 27
C03 18  X  FRE  @0 Champ électrique @5 28
C03 18  X  ENG  @0 Electric field @5 28
C03 18  X  SPA  @0 Campo eléctrico @5 28
C03 19  X  FRE  @0 Admittance @5 29
C03 19  X  ENG  @0 Admittance @5 29
C03 19  X  SPA  @0 Admitancia @5 29
C03 20  X  FRE  @0 Silicium @2 NC @5 41
C03 20  X  ENG  @0 Silicon @2 NC @5 41
C03 20  X  SPA  @0 Silicio @2 NC @5 41
C03 21  X  FRE  @0 . @4 INC @5 82
N21       @1 059
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0092833

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics</title>
<author>
<name sortKey="Van West, Ewoud" sort="Van West, Ewoud" uniqKey="Van West E" first="Ewoud" last="Van West">Ewoud Van West</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Akio" sort="Yamamoto, Akio" uniqKey="Yamamoto A" first="Akio" last="Yamamoto">Akio Yamamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Higuchi, Toshiro" sort="Higuchi, Toshiro" uniqKey="Higuchi T" first="Toshiro" last="Higuchi">Toshiro Higuchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0092833</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0092833 INIST</idno>
<idno type="RBID">Pascal:11-0092833</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000521</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000E50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics</title>
<author>
<name sortKey="Van West, Ewoud" sort="Van West, Ewoud" uniqKey="Van West E" first="Ewoud" last="Van West">Ewoud Van West</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Akio" sort="Yamamoto, Akio" uniqKey="Yamamoto A" first="Akio" last="Yamamoto">Akio Yamamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Higuchi, Toshiro" sort="Higuchi, Toshiro" uniqKey="Higuchi T" first="Toshiro" last="Higuchi">Toshiro Higuchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on automation science and engineering </title>
<title level="j" type="abbreviated">IEEE trans. autom. sci. eng. </title>
<idno type="ISSN">1545-5955</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on automation science and engineering </title>
<title level="j" type="abbreviated">IEEE trans. autom. sci. eng. </title>
<idno type="ISSN">1545-5955</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceleration control</term>
<term>Active system</term>
<term>Admittance</term>
<term>Air gap</term>
<term>Control synthesis</term>
<term>Electric field</term>
<term>Electric motor</term>
<term>Electrostatic force</term>
<term>Electrostatical levitation</term>
<term>Feedforward</term>
<term>Magnetic device</term>
<term>Magnetic levitation</term>
<term>Magnetic suspension</term>
<term>Manipulation</term>
<term>Motion control</term>
<term>Silicon</term>
<term>System with n degrees of freedom</term>
<term>Tactile sensitivity</term>
<term>Tilt</term>
<term>Tilt angle</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Manipulation</term>
<term>Lévitation électrostatique</term>
<term>Inclinaison</term>
<term>Dispositif magnétique</term>
<term>Commande accélération</term>
<term>Boucle anticipation</term>
<term>Synthèse commande</term>
<term>Angle inclinaison</term>
<term>Sensibilité tactile</term>
<term>Force électrostatique</term>
<term>Lévitation magnétique</term>
<term>Suspension magnétique</term>
<term>Entrefer</term>
<term>Système n degrés liberté</term>
<term>Moteur électrique</term>
<term>Système actif</term>
<term>Commande mouvement</term>
<term>Champ électrique</term>
<term>Admittance</term>
<term>Silicium</term>
<term>.</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Levitation techniques allow delicate objects, such as silicon wafers, to be manipulated without contact. In case of electrostatic and magnetic levitation, the object can be levitated by actively controlling the electric/magnetic field based on the measured air gap between the object and the levitator. Multiple degrees of freedom are controlled by several electric/magnetic actuators. For thin flat objects, the surface area is large enough for suspending the object in vertical direction, but the side surface is too small to realize active control for lateral motions. For stability, the levitation system relies on a passive lateral restoring force that will keep the object aligned with the levitator. The drawback of this passive force is that it is far weaker than the controlled suspension force. As a result, allowable accelerations in the horizontal plane have to be limited in a manipulation task to prevent loosing the object during motion. In this paper, a solution is proposed based on compensating the acceleration by Tilt Control. For both an electrostatic and a magnetic levitation system, the significant improvement of tolerance to lateral acceleration due to feedforward tilt control is presented. It is shown that not only for automated motion but also for human operated motion, the tilt control strategy is applicable. In the human operated motion, haptic technology such as the admittance control scheme, are used to realize satisfactory manipulation. Note to Practitioners-When levitation systems are used for transporting objects without contact, there is a practical problem that objects may be lost (dropped) if planar accelerations are too high, because the lateral holding force in these systems is very weak. This paper proposes a solution in which the object and its levitator are tilted so that a part of the stronger levitation force is also used to compensate for these planar accelerations. Tilting angles are realized directly based on the acceleration of the moving actuator, so that measurement of the relative lateral position with a feedback tilt control is not necessary. While it increases the complexity of the levitator since a tilting mechanism is needed, fast noncontact manipulation can be realized.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1545-5955</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. autom. sci. eng. </s0>
</fA03>
<fA05>
<s2>7</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VAN WEST (Ewoud)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YAMAMOTO (Akio)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HIGUCHI (Toshiro)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Precision Engineering, School of Engineering, Advanced Mechatronics Laboratory, University of Tokyo</s1>
<s2>Tokyo, 13-8656</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>451-462</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023B</s2>
<s5>354000194728780040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0092833</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on automation science and engineering </s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Levitation techniques allow delicate objects, such as silicon wafers, to be manipulated without contact. In case of electrostatic and magnetic levitation, the object can be levitated by actively controlling the electric/magnetic field based on the measured air gap between the object and the levitator. Multiple degrees of freedom are controlled by several electric/magnetic actuators. For thin flat objects, the surface area is large enough for suspending the object in vertical direction, but the side surface is too small to realize active control for lateral motions. For stability, the levitation system relies on a passive lateral restoring force that will keep the object aligned with the levitator. The drawback of this passive force is that it is far weaker than the controlled suspension force. As a result, allowable accelerations in the horizontal plane have to be limited in a manipulation task to prevent loosing the object during motion. In this paper, a solution is proposed based on compensating the acceleration by Tilt Control. For both an electrostatic and a magnetic levitation system, the significant improvement of tolerance to lateral acceleration due to feedforward tilt control is presented. It is shown that not only for automated motion but also for human operated motion, the tilt control strategy is applicable. In the human operated motion, haptic technology such as the admittance control scheme, are used to realize satisfactory manipulation. Note to Practitioners-When levitation systems are used for transporting objects without contact, there is a practical problem that objects may be lost (dropped) if planar accelerations are too high, because the lateral holding force in these systems is very weak. This paper proposes a solution in which the object and its levitator are tilted so that a part of the stronger levitation force is also used to compensate for these planar accelerations. Tilting angles are realized directly based on the acceleration of the moving actuator, so that measurement of the relative lateral position with a feedback tilt control is not necessary. While it increases the complexity of the levitator since a tilting mechanism is needed, fast noncontact manipulation can be realized.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05G01</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G07M</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02D07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Manipulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Manipulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Manipulación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Lévitation électrostatique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrostatical levitation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Levitación electrostática</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Inclinaison</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tilt</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Inclinación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dispositif magnétique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Magnetic device</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Dispositivo magnético</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Commande accélération</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Acceleration control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Boucle anticipation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Feedforward</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ciclo anticipación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Synthèse commande</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Control synthesis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Síntesis control</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Angle inclinaison</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tilt angle</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Angulo inclinación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Force électrostatique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrostatic force</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fuerza electrostática</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Lévitation magnétique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Magnetic levitation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Levitacíon magnetica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Suspension magnétique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Magnetic suspension</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Suspensión magnética</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Entrefer</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Air gap</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Entrehierro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Système n degrés liberté</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>System with n degrees of freedom</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Sistema n grados libertad</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Moteur électrique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electric motor</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Motor eléctrico</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Système actif</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Active system</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Sistema activo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Commande mouvement</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Motion control</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Control movimiento</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Champ électrique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electric field</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Campo eléctrico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Admittance</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Admittance</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Admitancia</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>41</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>059</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000E50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0092833
   |texte=   Manipulation of Thin Objects Using Levitation Techniques, Tilt Control, and Haptics
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024