Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach

Identifieur interne : 000E36 ( PascalFrancis/Curation ); précédent : 000E35; suivant : 000E37

Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach

Auteurs : C. J. Zandsteeg [Pays-Bas] ; D. J. H. Bruijnen [Pays-Bas] ; M. J. G. Van De Molengraft [Pays-Bas]

Source :

RBID : Pascal:11-0002733

Descripteurs français

English descriptors

Abstract

This paper introduces a step-by-step frequency domain loop-shaping procedure for tele-operation system controllers, in particular for the three-channel Environment Force Compensation (EFC) control architecture. The framework is explained by designing a controller for a tele-operated 5-DOF probe for ultrasound echo-cardiography. Models of the tele-operation system components are created and performance requirements are specified. A control design procedure is proposed using a generic tele-operation block-scheme. In this procedure, the choice for the EFC control architecture is underpinned and guidelines for the loop-shaping of this tele-operation controller for performance and stability robustness are given. The designed controllers are tuned using the introduced procedure. Passivity, performance and stability robustness of the newly designed controller are evaluated using experiments.
pA  
A01 01  1    @0 0957-4158
A03   1    @0 Mechatronics : (Oxf.)
A05       @2 20
A06       @2 7
A08 01  1  ENG  @1 Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach
A09 01  1  ENG  @1 Special Issue on Design and Control Methodologies in Telerobotics
A11 01  1    @1 ZANDSTEEG (C. J.)
A11 02  1    @1 BRUIJNEN (D. J. H.)
A11 03  1    @1 VAN DE MOLENGRAFT (M. J. G.)
A12 01  1    @1 SECCHI (Cristian) @9 ed.
A12 02  1    @1 CHOPRA (Nikhil) @9 ed.
A12 03  1    @1 PEER (Angelika) @9 ed.
A14 01      @1 Eindhoven University of Technology, Department of Mechanical Engineering, Postbus 513 @2 5600 MB Eindhoven @3 NLD @Z 1 aut. @Z 3 aut.
A14 02      @1 Philips Applied Technologies, High Tech Campus 7 @2 5656 AE Eindhoven @3 NLD @Z 2 aut.
A15 01      @1 University of Modena and Reggio Emilia, Via G. Amendola 2, Morselli Building @2 42122 Reggio Emilia @3 ITA @Z 1 aut.
A15 02      @1 Institute of Automatic Control Engineering, Technische Universität München @2 Munich @3 DEU @Z 3 aut.
A20       @1 767-777
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 22113 @5 354000193412970040
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 18 ref.
A47 01  1    @0 11-0002733
A60       @1 P
A61       @0 A
A64 01  1    @0 Mechatronics : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 This paper introduces a step-by-step frequency domain loop-shaping procedure for tele-operation system controllers, in particular for the three-channel Environment Force Compensation (EFC) control architecture. The framework is explained by designing a controller for a tele-operated 5-DOF probe for ultrasound echo-cardiography. Models of the tele-operation system components are created and performance requirements are specified. A control design procedure is proposed using a generic tele-operation block-scheme. In this procedure, the choice for the EFC control architecture is underpinned and guidelines for the loop-shaping of this tele-operation controller for performance and stability robustness are given. The designed controllers are tuned using the introduced procedure. Passivity, performance and stability robustness of the newly designed controller are evaluated using experiments.
C02 01  X    @0 001D02B04
C02 02  X    @0 001D02D07
C02 03  X    @0 002B24C01
C02 04  X    @0 001D02D06
C03 01  X  FRE  @0 Téléopération @5 06
C03 01  X  ENG  @0 Remote operation @5 06
C03 01  X  SPA  @0 Teleacción @5 06
C03 02  X  FRE  @0 Synthèse commande @5 07
C03 02  X  ENG  @0 Control synthesis @5 07
C03 02  X  SPA  @0 Síntesis control @5 07
C03 03  X  FRE  @0 Commande force @5 08
C03 03  X  ENG  @0 Force control @5 08
C03 03  X  SPA  @0 Control fuerza @5 08
C03 04  X  FRE  @0 Transducteur ultrason @5 09
C03 04  X  ENG  @0 Ultrasonic transducer @5 09
C03 04  X  SPA  @0 Transductor ultrasonido @5 09
C03 05  X  FRE  @0 Commande robuste @5 10
C03 05  X  ENG  @0 Robust control @5 10
C03 05  X  SPA  @0 Control robusta @5 10
C03 06  X  FRE  @0 Passivité @5 11
C03 06  X  ENG  @0 Passivity @5 11
C03 06  X  SPA  @0 Pasividad @5 11
C03 07  X  FRE  @0 Application médicale @5 12
C03 07  X  ENG  @0 Medical application @5 12
C03 07  X  SPA  @0 Aplicación medical @5 12
C03 08  X  FRE  @0 Relation homme machine @5 13
C03 08  X  ENG  @0 Man machine relation @5 13
C03 08  X  SPA  @0 Relación hombre máquina @5 13
C03 09  X  FRE  @0 Sensibilité tactile @5 18
C03 09  X  ENG  @0 Tactile sensitivity @5 18
C03 09  X  SPA  @0 Sensibilidad tactil @5 18
C03 10  X  FRE  @0 Ultrason @5 19
C03 10  X  ENG  @0 Ultrasound @5 19
C03 10  X  SPA  @0 Ultrasonido @5 19
C03 11  X  FRE  @0 Equilibrage @5 20
C03 11  X  ENG  @0 Balancing @5 20
C03 11  X  SPA  @0 Equilibrado @5 20
C03 12  X  FRE  @0 Système 5 degrés liberté @5 21
C03 12  X  ENG  @0 System with five degrees of freedom @5 21
C03 12  X  SPA  @0 Sistema 5 grados libertad @5 21
C03 13  X  FRE  @0 Critère performance @5 22
C03 13  X  ENG  @0 Performance requirement @5 22
C03 13  X  SPA  @0 Criterio resultado @5 22
C03 14  X  FRE  @0 Méthode pas à pas @5 28
C03 14  X  ENG  @0 Step by step method @5 28
C03 14  X  SPA  @0 Método paso a paso @5 28
C03 15  X  FRE  @0 Méthode domaine fréquence @5 29
C03 15  X  ENG  @0 Frequency domain method @5 29
C03 15  X  SPA  @0 Método dominio frecuencia @5 29
C03 16  X  FRE  @0 Filtrage fréquence @5 30
C03 16  X  ENG  @0 Frequency filtering @5 30
C03 16  X  SPA  @0 Filtrado frecuencia @5 30
C03 17  X  FRE  @0 Modélisation @5 31
C03 17  X  ENG  @0 Modeling @5 31
C03 17  X  SPA  @0 Modelización @5 31
C03 18  X  FRE  @0 Echocardiographie @5 33
C03 18  X  ENG  @0 Echocardiography @5 33
C03 18  X  SPA  @0 Ecocardiografía @5 33
C03 19  X  FRE  @0 Etude expérimentale @5 34
C03 19  X  ENG  @0 Experimental study @5 34
C03 19  X  SPA  @0 Estudio experimental @5 34
C03 20  X  FRE  @0 . @4 INC @5 82
C03 21  X  FRE  @0 Modelage de boucle @4 CD @5 96
C03 21  X  ENG  @0 Loop shaping @4 CD @5 96
C03 21  X  SPA  @0 Moldeo de la función de lazo @4 CD @5 96
N21       @1 003
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0002733

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach</title>
<author>
<name sortKey="Zandsteeg, C J" sort="Zandsteeg, C J" uniqKey="Zandsteeg C" first="C. J." last="Zandsteeg">C. J. Zandsteeg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Eindhoven University of Technology, Department of Mechanical Engineering, Postbus 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Bruijnen, D J H" sort="Bruijnen, D J H" uniqKey="Bruijnen D" first="D. J. H." last="Bruijnen">D. J. H. Bruijnen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Philips Applied Technologies, High Tech Campus 7</s1>
<s2>5656 AE Eindhoven</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Van De Molengraft, M J G" sort="Van De Molengraft, M J G" uniqKey="Van De Molengraft M" first="M. J. G." last="Van De Molengraft">M. J. G. Van De Molengraft</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Eindhoven University of Technology, Department of Mechanical Engineering, Postbus 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0002733</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0002733 INIST</idno>
<idno type="RBID">Pascal:11-0002733</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000535</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000E36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach</title>
<author>
<name sortKey="Zandsteeg, C J" sort="Zandsteeg, C J" uniqKey="Zandsteeg C" first="C. J." last="Zandsteeg">C. J. Zandsteeg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Eindhoven University of Technology, Department of Mechanical Engineering, Postbus 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Bruijnen, D J H" sort="Bruijnen, D J H" uniqKey="Bruijnen D" first="D. J. H." last="Bruijnen">D. J. H. Bruijnen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Philips Applied Technologies, High Tech Campus 7</s1>
<s2>5656 AE Eindhoven</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Van De Molengraft, M J G" sort="Van De Molengraft, M J G" uniqKey="Van De Molengraft M" first="M. J. G." last="Van De Molengraft">M. J. G. Van De Molengraft</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Eindhoven University of Technology, Department of Mechanical Engineering, Postbus 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Balancing</term>
<term>Control synthesis</term>
<term>Echocardiography</term>
<term>Experimental study</term>
<term>Force control</term>
<term>Frequency domain method</term>
<term>Frequency filtering</term>
<term>Loop shaping</term>
<term>Man machine relation</term>
<term>Medical application</term>
<term>Modeling</term>
<term>Passivity</term>
<term>Performance requirement</term>
<term>Remote operation</term>
<term>Robust control</term>
<term>Step by step method</term>
<term>System with five degrees of freedom</term>
<term>Tactile sensitivity</term>
<term>Ultrasonic transducer</term>
<term>Ultrasound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Téléopération</term>
<term>Synthèse commande</term>
<term>Commande force</term>
<term>Transducteur ultrason</term>
<term>Commande robuste</term>
<term>Passivité</term>
<term>Application médicale</term>
<term>Relation homme machine</term>
<term>Sensibilité tactile</term>
<term>Ultrason</term>
<term>Equilibrage</term>
<term>Système 5 degrés liberté</term>
<term>Critère performance</term>
<term>Méthode pas à pas</term>
<term>Méthode domaine fréquence</term>
<term>Filtrage fréquence</term>
<term>Modélisation</term>
<term>Echocardiographie</term>
<term>Etude expérimentale</term>
<term>.</term>
<term>Modelage de boucle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper introduces a step-by-step frequency domain loop-shaping procedure for tele-operation system controllers, in particular for the three-channel Environment Force Compensation (EFC) control architecture. The framework is explained by designing a controller for a tele-operated 5-DOF probe for ultrasound echo-cardiography. Models of the tele-operation system components are created and performance requirements are specified. A control design procedure is proposed using a generic tele-operation block-scheme. In this procedure, the choice for the EFC control architecture is underpinned and guidelines for the loop-shaping of this tele-operation controller for performance and stability robustness are given. The designed controllers are tuned using the introduced procedure. Passivity, performance and stability robustness of the newly designed controller are evaluated using experiments.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4158</s0>
</fA01>
<fA03 i2="1">
<s0>Mechatronics : (Oxf.)</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special Issue on Design and Control Methodologies in Telerobotics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZANDSTEEG (C. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRUIJNEN (D. J. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VAN DE MOLENGRAFT (M. J. G.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SECCHI (Cristian)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CHOPRA (Nikhil)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PEER (Angelika)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Eindhoven University of Technology, Department of Mechanical Engineering, Postbus 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Philips Applied Technologies, High Tech Campus 7</s1>
<s2>5656 AE Eindhoven</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Modena and Reggio Emilia, Via G. Amendola 2, Morselli Building</s1>
<s2>42122 Reggio Emilia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Institute of Automatic Control Engineering, Technische Universität München</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>767-777</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22113</s2>
<s5>354000193412970040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0002733</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mechatronics : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper introduces a step-by-step frequency domain loop-shaping procedure for tele-operation system controllers, in particular for the three-channel Environment Force Compensation (EFC) control architecture. The framework is explained by designing a controller for a tele-operated 5-DOF probe for ultrasound echo-cardiography. Models of the tele-operation system components are created and performance requirements are specified. A control design procedure is proposed using a generic tele-operation block-scheme. In this procedure, the choice for the EFC control architecture is underpinned and guidelines for the loop-shaping of this tele-operation controller for performance and stability robustness are given. The designed controllers are tuned using the introduced procedure. Passivity, performance and stability robustness of the newly designed controller are evaluated using experiments.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D07</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B24C01</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02D06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Synthèse commande</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Control synthesis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Síntesis control</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Force control</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Transducteur ultrason</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ultrasonic transducer</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Transductor ultrasonido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Commande robuste</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Robust control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Control robusta</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Passivité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Passivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pasividad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Application médicale</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Medical application</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aplicación medical</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relation homme machine</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Man machine relation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relación hombre máquina</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ultrason</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Ultrasound</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ultrasonido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Equilibrage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Balancing</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Equilibrado</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Système 5 degrés liberté</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>System with five degrees of freedom</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sistema 5 grados libertad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Critère performance</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Performance requirement</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Criterio resultado</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode pas à pas</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Step by step method</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método paso a paso</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthode domaine fréquence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Frequency domain method</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Método dominio frecuencia</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Filtrage fréquence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Frequency filtering</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Filtrado frecuencia</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Echocardiographie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Echocardiography</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Ecocardiografía</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Modelage de boucle</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Loop shaping</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Moldeo de la función de lazo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>003</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000E36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0002733
   |texte=   Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024