Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic display of constrained dynamic systems via admittance displays

Identifieur interne : 000936 ( PascalFrancis/Curation ); précédent : 000935; suivant : 000937

Haptic display of constrained dynamic systems via admittance displays

Auteurs : Eric L. Faulring [États-Unis] ; Kevin M. Lynch [États-Unis] ; J. Edward Colgate [États-Unis] ; Michael A. Peshkin [États-Unis]

Source :

RBID : Pascal:07-0219729

Descripteurs français

English descriptors

Abstract

In the Cobotic Hand Controller, we have introduced an admittance display that can render very high impedances (up to its own structural stiffness). This is due to its use of infinitely variable transmissions. While admittance displays typically excel at rendering high impedances, the incorporation of infinitely variable transmissions in the Cobotic Hand Controller allows the stable display of a wide dynamic range, including low impedances. The existence of a display that excels at rendering high-impedance constraints, but has high-fidelity control of low impedances tangent to those constraints, has led us to describe an admittance control architecture not often examined in the haptics community. In this paper, we develop a comprehensive approach that enables rendering of rigid motion constraints while simultaneously preserving the physical integrity of the intended inertial dynamics tangent to those constraints. This is in contrast to conventional impedance-control algorithms that focus primarily on rendering reaction forces along contact normals with constraints. We present this algorithm here, which is general to all admittance displays, and report on its implementation with the Cobotic Hand Controller. We offer examples of rigid bodies and linkages subject to holonomic and/or nonholonomic constraints.
pA  
A01 01  1    @0 1552-3098
A03   1    @0 IEEE trans. robot.
A05       @2 23
A06       @2 1
A08 01  1  ENG  @1 Haptic display of constrained dynamic systems via admittance displays
A11 01  1    @1 FAULRING (Eric L.)
A11 02  1    @1 LYNCH (Kevin M.)
A11 03  1    @1 COLGATE (J. Edward)
A11 04  1    @1 PESHKIN (Michael A.)
A14 01      @1 Chicago PT, LLC @2 Evanston, IL 60201 @3 USA @Z 1 aut.
A14 02      @1 Department of Mechanical Engineering, Northwestern University @2 Evanston, IL 60208 @3 USA @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 101-111
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 21023A @5 354000159738950080
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 41 ref.
A47 01  1    @0 07-0219729
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on robotics
A66 01      @0 USA
C01 01    ENG  @0 In the Cobotic Hand Controller, we have introduced an admittance display that can render very high impedances (up to its own structural stiffness). This is due to its use of infinitely variable transmissions. While admittance displays typically excel at rendering high impedances, the incorporation of infinitely variable transmissions in the Cobotic Hand Controller allows the stable display of a wide dynamic range, including low impedances. The existence of a display that excels at rendering high-impedance constraints, but has high-fidelity control of low impedances tangent to those constraints, has led us to describe an admittance control architecture not often examined in the haptics community. In this paper, we develop a comprehensive approach that enables rendering of rigid motion constraints while simultaneously preserving the physical integrity of the intended inertial dynamics tangent to those constraints. This is in contrast to conventional impedance-control algorithms that focus primarily on rendering reaction forces along contact normals with constraints. We present this algorithm here, which is general to all admittance displays, and report on its implementation with the Cobotic Hand Controller. We offer examples of rigid bodies and linkages subject to holonomic and/or nonholonomic constraints.
C02 01  X    @0 001D02D11
C03 01  X  FRE  @0 Système dynamique @5 06
C03 01  X  ENG  @0 Dynamical system @5 06
C03 01  X  SPA  @0 Sistema dinámico @5 06
C03 02  X  FRE  @0 Commande force @5 07
C03 02  X  ENG  @0 Force control @5 07
C03 02  X  SPA  @0 Control fuerza @5 07
C03 03  X  FRE  @0 Programme commande @5 08
C03 03  X  ENG  @0 Control program @5 08
C03 03  X  SPA  @0 Programa mando @5 08
C03 04  X  FRE  @0 Système non holonome @5 09
C03 04  X  ENG  @0 Non holonomic system @5 09
C03 04  X  SPA  @0 Sistema no holónomo @5 09
C03 05  X  FRE  @0 Interface utilisateur @5 18
C03 05  X  ENG  @0 User interface @5 18
C03 05  X  SPA  @0 Interfase usuario @5 18
C03 06  X  FRE  @0 Main @5 19
C03 06  X  ENG  @0 Hand @5 19
C03 06  X  SPA  @0 Mano @5 19
C03 07  X  FRE  @0 Impédance mécanique @5 20
C03 07  X  ENG  @0 Mechanical impedance @5 20
C03 07  X  SPA  @0 Impedancia mecánica @5 20
C03 08  X  FRE  @0 Sensibilité tactile @5 21
C03 08  X  ENG  @0 Tactile sensitivity @5 21
C03 08  X  SPA  @0 Sensibilidad tactil @5 21
C03 09  3  FRE  @0 Corps rigide @5 22
C03 09  3  ENG  @0 Rigid bodies @5 22
C03 10  X  FRE  @0 Mécanisme articulé @5 23
C03 10  X  ENG  @0 Linkage mechanism @5 23
C03 10  X  SPA  @0 Mecanismo articulado @5 23
C03 11  X  FRE  @0 Admittance @5 28
C03 11  X  ENG  @0 Admittance @5 28
C03 11  X  SPA  @0 Admitancia @5 28
C03 12  X  FRE  @0 Force réaction @5 29
C03 12  X  ENG  @0 Reaction force @5 29
C03 12  X  SPA  @0 Fuerza reacción @5 29
N21       @1 148
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0219729

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptic display of constrained dynamic systems via admittance displays</title>
<author>
<name sortKey="Faulring, Eric L" sort="Faulring, Eric L" uniqKey="Faulring E" first="Eric L." last="Faulring">Eric L. Faulring</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chicago PT, LLC</s1>
<s2>Evanston, IL 60201</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Lynch, Kevin M" sort="Lynch, Kevin M" uniqKey="Lynch K" first="Kevin M." last="Lynch">Kevin M. Lynch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Colgate, J Edward" sort="Colgate, J Edward" uniqKey="Colgate J" first="J. Edward" last="Colgate">J. Edward Colgate</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Peshkin, Michael A" sort="Peshkin, Michael A" uniqKey="Peshkin M" first="Michael A." last="Peshkin">Michael A. Peshkin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0219729</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0219729 INIST</idno>
<idno type="RBID">Pascal:07-0219729</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B59</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000936</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptic display of constrained dynamic systems via admittance displays</title>
<author>
<name sortKey="Faulring, Eric L" sort="Faulring, Eric L" uniqKey="Faulring E" first="Eric L." last="Faulring">Eric L. Faulring</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chicago PT, LLC</s1>
<s2>Evanston, IL 60201</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Lynch, Kevin M" sort="Lynch, Kevin M" uniqKey="Lynch K" first="Kevin M." last="Lynch">Kevin M. Lynch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Colgate, J Edward" sort="Colgate, J Edward" uniqKey="Colgate J" first="J. Edward" last="Colgate">J. Edward Colgate</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Peshkin, Michael A" sort="Peshkin, Michael A" uniqKey="Peshkin M" first="Michael A." last="Peshkin">Michael A. Peshkin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on robotics </title>
<title level="j" type="abbreviated">IEEE trans. robot. </title>
<idno type="ISSN">1552-3098</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on robotics </title>
<title level="j" type="abbreviated">IEEE trans. robot. </title>
<idno type="ISSN">1552-3098</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Admittance</term>
<term>Control program</term>
<term>Dynamical system</term>
<term>Force control</term>
<term>Hand</term>
<term>Linkage mechanism</term>
<term>Mechanical impedance</term>
<term>Non holonomic system</term>
<term>Reaction force</term>
<term>Rigid bodies</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Système dynamique</term>
<term>Commande force</term>
<term>Programme commande</term>
<term>Système non holonome</term>
<term>Interface utilisateur</term>
<term>Main</term>
<term>Impédance mécanique</term>
<term>Sensibilité tactile</term>
<term>Corps rigide</term>
<term>Mécanisme articulé</term>
<term>Admittance</term>
<term>Force réaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the Cobotic Hand Controller, we have introduced an admittance display that can render very high impedances (up to its own structural stiffness). This is due to its use of infinitely variable transmissions. While admittance displays typically excel at rendering high impedances, the incorporation of infinitely variable transmissions in the Cobotic Hand Controller allows the stable display of a wide dynamic range, including low impedances. The existence of a display that excels at rendering high-impedance constraints, but has high-fidelity control of low impedances tangent to those constraints, has led us to describe an admittance control architecture not often examined in the haptics community. In this paper, we develop a comprehensive approach that enables rendering of rigid motion constraints while simultaneously preserving the physical integrity of the intended inertial dynamics tangent to those constraints. This is in contrast to conventional impedance-control algorithms that focus primarily on rendering reaction forces along contact normals with constraints. We present this algorithm here, which is general to all admittance displays, and report on its implementation with the Cobotic Hand Controller. We offer examples of rigid bodies and linkages subject to holonomic and/or nonholonomic constraints.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1552-3098</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. robot. </s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptic display of constrained dynamic systems via admittance displays</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FAULRING (Eric L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LYNCH (Kevin M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>COLGATE (J. Edward)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PESHKIN (Michael A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Chicago PT, LLC</s1>
<s2>Evanston, IL 60201</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mechanical Engineering, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>101-111</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023A</s2>
<s5>354000159738950080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0219729</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on robotics </s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the Cobotic Hand Controller, we have introduced an admittance display that can render very high impedances (up to its own structural stiffness). This is due to its use of infinitely variable transmissions. While admittance displays typically excel at rendering high impedances, the incorporation of infinitely variable transmissions in the Cobotic Hand Controller allows the stable display of a wide dynamic range, including low impedances. The existence of a display that excels at rendering high-impedance constraints, but has high-fidelity control of low impedances tangent to those constraints, has led us to describe an admittance control architecture not often examined in the haptics community. In this paper, we develop a comprehensive approach that enables rendering of rigid motion constraints while simultaneously preserving the physical integrity of the intended inertial dynamics tangent to those constraints. This is in contrast to conventional impedance-control algorithms that focus primarily on rendering reaction forces along contact normals with constraints. We present this algorithm here, which is general to all admittance displays, and report on its implementation with the Cobotic Hand Controller. We offer examples of rigid bodies and linkages subject to holonomic and/or nonholonomic constraints.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Système dynamique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Dynamical system</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema dinámico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Force control</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Programme commande</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Control program</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Programa mando</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Système non holonome</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Non holonomic system</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sistema no holónomo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>User interface</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Main</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Hand</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mano</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Impédance mécanique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Mechanical impedance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Impedancia mecánica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Corps rigide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Rigid bodies</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme articulé</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Linkage mechanism</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo articulado</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Admittance</s0>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Admittance</s0>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Admitancia</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Force réaction</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Reaction force</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Fuerza reacción</s0>
<s5>29</s5>
</fC03>
<fN21>
<s1>148</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000936 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000936 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:07-0219729
   |texte=   Haptic display of constrained dynamic systems via admittance displays
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024