Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments

Identifieur interne : 000803 ( PascalFrancis/Curation ); précédent : 000802; suivant : 000804

An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments

Auteurs : Iraj Hassanzadeh [Iran] ; Farrokh Janabi-Sharifi [Canada]

Source :

RBID : Pascal:06-0315331

Descripteurs français

English descriptors

Abstract

In this paper, a new open architecture for visual servo control tasks is illustrated. A Puma-560 robotic manipulator is used to prove the concept. This design enables doing hybrid force/visual servo control in an unstructured environment in different modes. Also, it can be controlled through Internet in teleoperation mode using a haptic device. Our proposed structure includes two major parts, hardware and software. In terms of hardware, it consists of a master (host) computer, a slave (target) computer, a Puma 560 manipulator, a CCD camera, a force sensor and a haptic device. There are five DAQ cards, interfacing Puma 560 and a slave computer. An open architecture package is developed using Matlab®, Simulink® and XPC target toolbox. This package has the Hardware-In-the-Loop (HIL) property, i.e., enables one to readily implement different configurations of force, visual or hybrid control in real time. The implementation includes the following stages. First of all, retrofitting of puma was carried out. Then a modular joint controller for Puma 560 was realized using Simulink®. Force sensor driver and force control implementation were written, using sfunction blocks of Simulink®. Visual images were captured through Image Acquisition Toolbox of Matlab®, and processed using Image Processing Toolbox. A haptic device interface was also written in Simulink®. Thus, this setup could be readily reconfigured and accommodate any other robotic manipulator and/or other sensors without the trouble of the external issues relevant to the control, interface and software, while providing flexibility in components modification.
pA  
A01 01  1    @0 0277-786X
A05       @2 6052
A08 01  1  ENG  @1 An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments
A09 01  1  ENG  @1 Optomechatronic systems control : 5-7 December 2005, Sapporo, Japan
A11 01  1    @1 HASSANZADEH (Iraj)
A11 02  1    @1 JANABI-SHARIFI (Farrokh)
A12 01  1    @1 JANABI-SHARIFI (Farrokh) @9 ed.
A14 01      @1 Center of Excellence for Mechatronics, University of Tabriz @2 Tabriz @3 IRN @Z 1 aut.
A14 02      @1 Robotic and Manufacturing Automation Laboratory (RMAL), Department of Mechanical and Industrial Engineering, Ryerson University @2 Toronto @3 CAN @Z 2 aut.
A18 01  1    @1 Society of photo-optical instrumentation engineers @3 USA @9 org-cong.
A20       @2 605205.1-605205.9
A21       @1 2005
A23 01      @0 ENG
A26 01      @0 0-8194-6088-5
A43 01      @1 INIST @2 21760 @5 354000153481630040
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 33 ref.
A47 01  1    @0 06-0315331
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE, the International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 In this paper, a new open architecture for visual servo control tasks is illustrated. A Puma-560 robotic manipulator is used to prove the concept. This design enables doing hybrid force/visual servo control in an unstructured environment in different modes. Also, it can be controlled through Internet in teleoperation mode using a haptic device. Our proposed structure includes two major parts, hardware and software. In terms of hardware, it consists of a master (host) computer, a slave (target) computer, a Puma 560 manipulator, a CCD camera, a force sensor and a haptic device. There are five DAQ cards, interfacing Puma 560 and a slave computer. An open architecture package is developed using Matlab®, Simulink® and XPC target toolbox. This package has the Hardware-In-the-Loop (HIL) property, i.e., enables one to readily implement different configurations of force, visual or hybrid control in real time. The implementation includes the following stages. First of all, retrofitting of puma was carried out. Then a modular joint controller for Puma 560 was realized using Simulink®. Force sensor driver and force control implementation were written, using sfunction blocks of Simulink®. Visual images were captured through Image Acquisition Toolbox of Matlab®, and processed using Image Processing Toolbox. A haptic device interface was also written in Simulink®. Thus, this setup could be readily reconfigured and accommodate any other robotic manipulator and/or other sensors without the trouble of the external issues relevant to the control, interface and software, while providing flexibility in components modification.
C02 01  3    @0 001B00G07T
C03 01  3  FRE  @0 Capteur force @5 06
C03 01  3  ENG  @0 Force sensors @5 06
C03 02  3  FRE  @0 Mesure force @5 07
C03 02  3  ENG  @0 Force measurement @5 07
C03 03  X  FRE  @0 Capteur mesure @5 08
C03 03  X  ENG  @0 Measurement sensor @5 08
C03 03  X  SPA  @0 Captador medida @5 08
C03 04  X  FRE  @0 Contrôle visuel @5 18
C03 04  X  ENG  @0 Visual control @5 18
C03 04  X  SPA  @0 Control visual @5 18
C03 05  X  FRE  @0 Robotique @5 19
C03 05  X  ENG  @0 Robotics @5 19
C03 05  X  SPA  @0 Robótica @5 19
C03 06  3  FRE  @0 Manipulateur @5 20
C03 06  3  ENG  @0 Manipulators @5 20
C03 07  3  FRE  @0 Internet @5 21
C03 07  3  ENG  @0 Internet @5 21
C03 08  X  FRE  @0 Téléopération @5 22
C03 08  X  ENG  @0 Remote operation @5 22
C03 08  X  SPA  @0 Teleacción @5 22
C03 09  3  FRE  @0 Sensibilité tactile @5 23
C03 09  3  ENG  @0 Touch (physiological) @5 23
C03 10  X  FRE  @0 Caméra CCD @5 24
C03 10  X  ENG  @0 CCD camera @5 24
C03 10  X  SPA  @0 Cámara CCD @5 24
C03 11  X  FRE  @0 Temps réel @5 25
C03 11  X  ENG  @0 Real time @5 25
C03 11  X  SPA  @0 Tiempo real @5 25
C03 12  X  FRE  @0 Articulation @5 26
C03 12  X  ENG  @0 Joint @5 26
C03 12  X  SPA  @0 Articulación @5 26
C03 13  X  FRE  @0 Commande retour état @5 27
C03 13  X  ENG  @0 State feedback @5 27
C03 13  X  SPA  @0 Bucle realimentación estado @5 27
C03 14  3  FRE  @0 Commande force @5 28
C03 14  3  ENG  @0 Force control @5 28
C03 15  X  FRE  @0 Simulation HIL @5 29
C03 15  X  ENG  @0 Hardware in the loop simulation @5 29
C03 15  X  SPA  @0 Simulación HIL @5 29
C03 16  3  FRE  @0 Traitement image @5 30
C03 16  3  ENG  @0 Image processing @5 30
C03 17  3  FRE  @0 Assemblage mécanique @5 41
C03 17  3  ENG  @0 Joints @5 41
N21       @1 205
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Optomechatronic systems control. Conference @3 Sapporo JPN @4 2005

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0315331

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments</title>
<author>
<name sortKey="Hassanzadeh, Iraj" sort="Hassanzadeh, Iraj" uniqKey="Hassanzadeh I" first="Iraj" last="Hassanzadeh">Iraj Hassanzadeh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center of Excellence for Mechatronics, University of Tabriz</s1>
<s2>Tabriz</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Janabi Sharifi, Farrokh" sort="Janabi Sharifi, Farrokh" uniqKey="Janabi Sharifi F" first="Farrokh" last="Janabi-Sharifi">Farrokh Janabi-Sharifi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Robotic and Manufacturing Automation Laboratory (RMAL), Department of Mechanical and Industrial Engineering, Ryerson University</s1>
<s2>Toronto</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0315331</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0315331 INIST</idno>
<idno type="RBID">Pascal:06-0315331</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D03</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000803</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments</title>
<author>
<name sortKey="Hassanzadeh, Iraj" sort="Hassanzadeh, Iraj" uniqKey="Hassanzadeh I" first="Iraj" last="Hassanzadeh">Iraj Hassanzadeh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center of Excellence for Mechatronics, University of Tabriz</s1>
<s2>Tabriz</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Janabi Sharifi, Farrokh" sort="Janabi Sharifi, Farrokh" uniqKey="Janabi Sharifi F" first="Farrokh" last="Janabi-Sharifi">Farrokh Janabi-Sharifi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Robotic and Manufacturing Automation Laboratory (RMAL), Department of Mechanical and Industrial Engineering, Ryerson University</s1>
<s2>Toronto</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CCD camera</term>
<term>Force control</term>
<term>Force measurement</term>
<term>Force sensors</term>
<term>Hardware in the loop simulation</term>
<term>Image processing</term>
<term>Internet</term>
<term>Joint</term>
<term>Joints</term>
<term>Manipulators</term>
<term>Measurement sensor</term>
<term>Real time</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>State feedback</term>
<term>Touch (physiological)</term>
<term>Visual control</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Capteur force</term>
<term>Mesure force</term>
<term>Capteur mesure</term>
<term>Contrôle visuel</term>
<term>Robotique</term>
<term>Manipulateur</term>
<term>Internet</term>
<term>Téléopération</term>
<term>Sensibilité tactile</term>
<term>Caméra CCD</term>
<term>Temps réel</term>
<term>Articulation</term>
<term>Commande retour état</term>
<term>Commande force</term>
<term>Simulation HIL</term>
<term>Traitement image</term>
<term>Assemblage mécanique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Robotique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, a new open architecture for visual servo control tasks is illustrated. A Puma-560 robotic manipulator is used to prove the concept. This design enables doing hybrid force/visual servo control in an unstructured environment in different modes. Also, it can be controlled through Internet in teleoperation mode using a haptic device. Our proposed structure includes two major parts, hardware and software. In terms of hardware, it consists of a master (host) computer, a slave (target) computer, a Puma 560 manipulator, a CCD camera, a force sensor and a haptic device. There are five DAQ cards, interfacing Puma 560 and a slave computer. An open architecture package is developed using Matlab®, Simulink® and XPC target toolbox. This package has the Hardware-In-the-Loop (HIL) property, i.e., enables one to readily implement different configurations of force, visual or hybrid control in real time. The implementation includes the following stages. First of all, retrofitting of puma was carried out. Then a modular joint controller for Puma 560 was realized using Simulink®. Force sensor driver and force control implementation were written, using sfunction blocks of Simulink®. Visual images were captured through Image Acquisition Toolbox of Matlab®, and processed using Image Processing Toolbox. A haptic device interface was also written in Simulink®. Thus, this setup could be readily reconfigured and accommodate any other robotic manipulator and/or other sensors without the trouble of the external issues relevant to the control, interface and software, while providing flexibility in components modification.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6052</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Optomechatronic systems control : 5-7 December 2005, Sapporo, Japan</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HASSANZADEH (Iraj)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JANABI-SHARIFI (Farrokh)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>JANABI-SHARIFI (Farrokh)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Center of Excellence for Mechatronics, University of Tabriz</s1>
<s2>Tabriz</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Robotic and Manufacturing Automation Laboratory (RMAL), Department of Mechanical and Industrial Engineering, Ryerson University</s1>
<s2>Toronto</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>605205.1-605205.9</s2>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>0-8194-6088-5</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000153481630040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0315331</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, a new open architecture for visual servo control tasks is illustrated. A Puma-560 robotic manipulator is used to prove the concept. This design enables doing hybrid force/visual servo control in an unstructured environment in different modes. Also, it can be controlled through Internet in teleoperation mode using a haptic device. Our proposed structure includes two major parts, hardware and software. In terms of hardware, it consists of a master (host) computer, a slave (target) computer, a Puma 560 manipulator, a CCD camera, a force sensor and a haptic device. There are five DAQ cards, interfacing Puma 560 and a slave computer. An open architecture package is developed using Matlab®, Simulink® and XPC target toolbox. This package has the Hardware-In-the-Loop (HIL) property, i.e., enables one to readily implement different configurations of force, visual or hybrid control in real time. The implementation includes the following stages. First of all, retrofitting of puma was carried out. Then a modular joint controller for Puma 560 was realized using Simulink®. Force sensor driver and force control implementation were written, using sfunction blocks of Simulink®. Visual images were captured through Image Acquisition Toolbox of Matlab®, and processed using Image Processing Toolbox. A haptic device interface was also written in Simulink®. Thus, this setup could be readily reconfigured and accommodate any other robotic manipulator and/or other sensors without the trouble of the external issues relevant to the control, interface and software, while providing flexibility in components modification.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Capteur force</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Force sensors</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mesure force</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Force measurement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Contrôle visuel</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Visual control</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Control visual</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Manipulateur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Manipulators</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Internet</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Internet</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Touch (physiological)</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Caméra CCD</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>CCD camera</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cámara CCD</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Real time</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Articulation</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Joint</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Articulación</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Commande retour état</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>State feedback</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Bucle realimentación estado</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Commande force</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Force control</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Simulation HIL</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Hardware in the loop simulation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Simulación HIL</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Traitement image</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Image processing</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Assemblage mécanique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Joints</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>205</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Optomechatronic systems control. Conference</s1>
<s3>Sapporo JPN</s3>
<s4>2005</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000803 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000803 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:06-0315331
   |texte=   An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024