Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation

Identifieur interne : 000631 ( PascalFrancis/Curation ); précédent : 000630; suivant : 000632

Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation

Auteurs : Mayumi Shimizu [Japon] ; Yasuaki Nakamura [Japon]

Source :

RBID : Pascal:05-0335568

Descripteurs français

English descriptors

Abstract

This paper deals with a neurosurgical simulation system with precise volume rendering and smooth tactile sensation. In the system, the Octree based hierarchical representation of volume data with continuous tri-cubic parametric functions, called volumetric implicit functions, and smooth boundary surfaces are introduced to provide detailed solid and smooth tactile sensation in an interactive environment. The volume data represented as voxel data, which are created from CT or MRI images, are divided into sub-volume until volumetric implicit functions can approximate voxel values accurately. An Octree manages the divided volume and parameters of the implicit functions in a hierarchical manner. Furthermore, smooth boundary surfaces are constructed by fitting points on a level surface of the implicit functions. In order to render more detailed solid than voxel precision when objects are zoomed up, sub-sampled voxels are generated by using the implicit functions. As for the tactile sensation, haptic device, PHANToM, is used to actualize a smooth reaction force which is calculated by the surface normal and the distance from a position of an instrument to the nearest surface. Incision with tactile sensation can be executed by making voxels underlying the instrument transparent, when a reaction force is greater than a limit. Several experiments reveal the effectiveness of the proposed methods.
pA  
A01 01  1    @0 0302-9743
A05       @2 3480
A08 01  1  ENG  @1 Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation
A09 01  1  ENG  @1 Computational science and its applications : Singapore, 9-12 May 2005
A11 01  1    @1 SHIMIZU (Mayumi)
A11 02  1    @1 NAKAMURA (Yasuaki)
A12 01  1    @1 GERVASI (Osvaldo) @9 ed.
A12 02  1    @1 GAVRILOVA (Marina L.) @9 ed.
A12 03  1    @1 KUMAR (Vipin) @9 ed.
A12 04  1    @1 LAGANA (Antonio) @9 ed.
A12 05  1    @1 LEE HEOW PUEH @9 ed.
A12 06  1    @1 MUN YOUNGSONG @9 ed.
A12 07  1    @1 TANIAR (David) @9 ed.
A12 08  1    @1 TAN (Chih Jeng Kenneth) @9 ed.
A14 01      @1 Department of Computer arid Media Technologies, Hiroshima City University, 3-4-1, Ozuka-higashi @2 Asa-minami-ku, Hiroshima 731-3194 @3 JPN @Z 1 aut. @Z 2 aut.
A20       @2 part III, 1013-1022
A21       @1 2005
A23 01      @0 ENG
A26 01      @0 3-540-25860-4
A43 01      @1 INIST @2 16343 @5 354000124496183740
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 05-0335568
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Lecture notes in computer science
A66 01      @0 DEU
C01 01    ENG  @0 This paper deals with a neurosurgical simulation system with precise volume rendering and smooth tactile sensation. In the system, the Octree based hierarchical representation of volume data with continuous tri-cubic parametric functions, called volumetric implicit functions, and smooth boundary surfaces are introduced to provide detailed solid and smooth tactile sensation in an interactive environment. The volume data represented as voxel data, which are created from CT or MRI images, are divided into sub-volume until volumetric implicit functions can approximate voxel values accurately. An Octree manages the divided volume and parameters of the implicit functions in a hierarchical manner. Furthermore, smooth boundary surfaces are constructed by fitting points on a level surface of the implicit functions. In order to render more detailed solid than voxel precision when objects are zoomed up, sub-sampled voxels are generated by using the implicit functions. As for the tactile sensation, haptic device, PHANToM, is used to actualize a smooth reaction force which is calculated by the surface normal and the distance from a position of an instrument to the nearest surface. Incision with tactile sensation can be executed by making voxels underlying the instrument transparent, when a reaction force is greater than a limit. Several experiments reveal the effectiveness of the proposed methods.
C02 01  X    @0 001D02
C03 01  X  FRE  @0 Géométrie algorithmique @5 06
C03 01  X  ENG  @0 Computational geometry @5 06
C03 01  X  SPA  @0 Geometría computacional @5 06
C03 02  X  FRE  @0 Rendu image @5 07
C03 02  X  ENG  @0 Image rendering @5 07
C03 02  X  SPA  @0 Restitucíon imagen @5 07
C03 03  X  FRE  @0 Structure hiérarchisée @5 08
C03 03  X  ENG  @0 Hierarchized structure @5 08
C03 03  X  SPA  @0 Estructura jerarquizada @5 08
C03 04  X  FRE  @0 Imagerie RMN @5 09
C03 04  X  ENG  @0 Nuclear magnetic resonance imaging @5 09
C03 04  X  SPA  @0 Imaginería RMN @5 09
C03 05  X  FRE  @0 Surface lisse @5 18
C03 05  X  ENG  @0 Smooth surface @5 18
C03 05  X  SPA  @0 Superficie lisa @5 18
C03 06  X  FRE  @0 Voxel @5 19
C03 06  X  ENG  @0 Voxel @5 19
C03 06  X  SPA  @0 Voxel @5 19
C03 07  X  FRE  @0 Sensibilité tactile @5 20
C03 07  X  ENG  @0 Tactile sensitivity @5 20
C03 07  X  SPA  @0 Sensibilidad tactil @5 20
C03 08  X  FRE  @0 Sensation @5 21
C03 08  X  ENG  @0 Sensation @5 21
C03 08  X  SPA  @0 Sensación @5 21
C03 09  3  FRE  @0 Tomographie numérique @5 22
C03 09  3  ENG  @0 Computerized tomography @5 22
C03 10  X  FRE  @0 Système hiérarchisé @5 23
C03 10  X  ENG  @0 Hierarchical system @5 23
C03 10  X  SPA  @0 Sistema jerarquizado @5 23
C03 11  X  FRE  @0 Octarbre @5 24
C03 11  X  ENG  @0 Octree @5 24
C03 11  X  SPA  @0 Octárbol @5 24
C03 12  X  FRE  @0 Fonction continue @5 25
C03 12  X  ENG  @0 Continuous function @5 25
C03 12  X  SPA  @0 Función continua @5 25
C03 13  X  FRE  @0 Cubique @5 26
C03 13  X  ENG  @0 Cubics @5 26
C03 13  X  SPA  @0 Cúbico @5 26
C03 14  X  FRE  @0 Fonction régulière @5 27
C03 14  X  ENG  @0 Smooth function @5 27
C03 14  X  SPA  @0 Función regular @5 27
C03 15  X  FRE  @0 Fonction valeur @5 28
C03 15  X  ENG  @0 Value function @5 28
C03 15  X  SPA  @0 Función valor @5 28
C03 16  X  FRE  @0 Ajustement courbe @5 29
C03 16  X  ENG  @0 Curve fitting @5 29
C03 16  X  SPA  @0 Ajustamiento curva @5 29
C03 17  3  FRE  @0 Ajustement surface @5 41
C03 17  3  ENG  @0 Surface fitting @5 41
C03 18  X  FRE  @0 . @4 INC @5 82
C03 19  X  FRE  @0 Normale surface @4 CD @5 96
C03 19  X  ENG  @0 Surface normal @4 CD @5 96
C03 19  X  SPA  @0 Normal superficie @4 CD @5 96
N21       @1 234
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 ICCSA 2005 : international conference on computational science and its applications @3 Singapore SGP @4 2005-05-09

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0335568

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation</title>
<author>
<name sortKey="Shimizu, Mayumi" sort="Shimizu, Mayumi" uniqKey="Shimizu M" first="Mayumi" last="Shimizu">Mayumi Shimizu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Computer arid Media Technologies, Hiroshima City University, 3-4-1, Ozuka-higashi</s1>
<s2>Asa-minami-ku, Hiroshima 731-3194</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Yasuaki" sort="Nakamura, Yasuaki" uniqKey="Nakamura Y" first="Yasuaki" last="Nakamura">Yasuaki Nakamura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Computer arid Media Technologies, Hiroshima City University, 3-4-1, Ozuka-higashi</s1>
<s2>Asa-minami-ku, Hiroshima 731-3194</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0335568</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0335568 INIST</idno>
<idno type="RBID">Pascal:05-0335568</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E77</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000631</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation</title>
<author>
<name sortKey="Shimizu, Mayumi" sort="Shimizu, Mayumi" uniqKey="Shimizu M" first="Mayumi" last="Shimizu">Mayumi Shimizu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Computer arid Media Technologies, Hiroshima City University, 3-4-1, Ozuka-higashi</s1>
<s2>Asa-minami-ku, Hiroshima 731-3194</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Yasuaki" sort="Nakamura, Yasuaki" uniqKey="Nakamura Y" first="Yasuaki" last="Nakamura">Yasuaki Nakamura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Computer arid Media Technologies, Hiroshima City University, 3-4-1, Ozuka-higashi</s1>
<s2>Asa-minami-ku, Hiroshima 731-3194</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational geometry</term>
<term>Computerized tomography</term>
<term>Continuous function</term>
<term>Cubics</term>
<term>Curve fitting</term>
<term>Hierarchical system</term>
<term>Hierarchized structure</term>
<term>Image rendering</term>
<term>Nuclear magnetic resonance imaging</term>
<term>Octree</term>
<term>Sensation</term>
<term>Smooth function</term>
<term>Smooth surface</term>
<term>Surface fitting</term>
<term>Surface normal</term>
<term>Tactile sensitivity</term>
<term>Value function</term>
<term>Voxel</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Géométrie algorithmique</term>
<term>Rendu image</term>
<term>Structure hiérarchisée</term>
<term>Imagerie RMN</term>
<term>Surface lisse</term>
<term>Voxel</term>
<term>Sensibilité tactile</term>
<term>Sensation</term>
<term>Tomographie numérique</term>
<term>Système hiérarchisé</term>
<term>Octarbre</term>
<term>Fonction continue</term>
<term>Cubique</term>
<term>Fonction régulière</term>
<term>Fonction valeur</term>
<term>Ajustement courbe</term>
<term>Ajustement surface</term>
<term>.</term>
<term>Normale surface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper deals with a neurosurgical simulation system with precise volume rendering and smooth tactile sensation. In the system, the Octree based hierarchical representation of volume data with continuous tri-cubic parametric functions, called volumetric implicit functions, and smooth boundary surfaces are introduced to provide detailed solid and smooth tactile sensation in an interactive environment. The volume data represented as voxel data, which are created from CT or MRI images, are divided into sub-volume until volumetric implicit functions can approximate voxel values accurately. An Octree manages the divided volume and parameters of the implicit functions in a hierarchical manner. Furthermore, smooth boundary surfaces are constructed by fitting points on a level surface of the implicit functions. In order to render more detailed solid than voxel precision when objects are zoomed up, sub-sampled voxels are generated by using the implicit functions. As for the tactile sensation, haptic device, PHANToM, is used to actualize a smooth reaction force which is calculated by the surface normal and the distance from a position of an instrument to the nearest surface. Incision with tactile sensation can be executed by making voxels underlying the instrument transparent, when a reaction force is greater than a limit. Several experiments reveal the effectiveness of the proposed methods.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0302-9743</s0>
</fA01>
<fA05>
<s2>3480</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Computational science and its applications : Singapore, 9-12 May 2005</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SHIMIZU (Mayumi)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NAKAMURA (Yasuaki)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GERVASI (Osvaldo)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GAVRILOVA (Marina L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KUMAR (Vipin)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>LAGANA (Antonio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>LEE HEOW PUEH</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>MUN YOUNGSONG</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>TANIAR (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>TAN (Chih Jeng Kenneth)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Computer arid Media Technologies, Hiroshima City University, 3-4-1, Ozuka-higashi</s1>
<s2>Asa-minami-ku, Hiroshima 731-3194</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>part III, 1013-1022</s2>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>3-540-25860-4</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16343</s2>
<s5>354000124496183740</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0335568</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Lecture notes in computer science</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper deals with a neurosurgical simulation system with precise volume rendering and smooth tactile sensation. In the system, the Octree based hierarchical representation of volume data with continuous tri-cubic parametric functions, called volumetric implicit functions, and smooth boundary surfaces are introduced to provide detailed solid and smooth tactile sensation in an interactive environment. The volume data represented as voxel data, which are created from CT or MRI images, are divided into sub-volume until volumetric implicit functions can approximate voxel values accurately. An Octree manages the divided volume and parameters of the implicit functions in a hierarchical manner. Furthermore, smooth boundary surfaces are constructed by fitting points on a level surface of the implicit functions. In order to render more detailed solid than voxel precision when objects are zoomed up, sub-sampled voxels are generated by using the implicit functions. As for the tactile sensation, haptic device, PHANToM, is used to actualize a smooth reaction force which is calculated by the surface normal and the distance from a position of an instrument to the nearest surface. Incision with tactile sensation can be executed by making voxels underlying the instrument transparent, when a reaction force is greater than a limit. Several experiments reveal the effectiveness of the proposed methods.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Géométrie algorithmique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Computational geometry</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Geometría computacional</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Rendu image</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Image rendering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Restitucíon imagen</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Structure hiérarchisée</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hierarchized structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estructura jerarquizada</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Imagerie RMN</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nuclear magnetic resonance imaging</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Imaginería RMN</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Surface lisse</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Smooth surface</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Superficie lisa</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Voxel</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Voxel</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Voxel</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sensation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Sensation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sensación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Tomographie numérique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Computerized tomography</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Système hiérarchisé</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Hierarchical system</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sistema jerarquizado</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Octarbre</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Octree</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Octárbol</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Fonction continue</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Continuous function</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Función continua</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cubique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cubics</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cúbico</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Fonction régulière</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Smooth function</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Función regular</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Fonction valeur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Value function</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Función valor</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ajustement courbe</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Curve fitting</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Ajustamiento curva</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Ajustement surface</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Surface fitting</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Normale surface</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Surface normal</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Normal superficie</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>234</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICCSA 2005 : international conference on computational science and its applications</s1>
<s3>Singapore SGP</s3>
<s4>2005-05-09</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000631 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000631 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:05-0335568
   |texte=   Constructing detailed solid and smooth surfaces from voxel data for neurosurgical simulation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024