Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Needle insertion modeling and simulation

Identifieur interne : 000387 ( PascalFrancis/Curation ); précédent : 000386; suivant : 000388

Needle insertion modeling and simulation

Auteurs : Simon P. Dimaio [Canada] ; S. E. Salcudean [Canada]

Source :

RBID : Pascal:04-0036801

Descripteurs français

English descriptors

Abstract

A methodology for estimating the force distribution that occurs along a needle shaft during insertion is described. An experimental system for measuring planar tissue phantom deformation during needle insertions has been developed and is presented. A two-dimensional linear elastostatic material model, discretised using the finite element method, is used to derive contact force information that is not directly measurable. This approach provides a method for quantifying the needle forces and soft tissue deformations that occur during general needle trajectories in multiple dimensions. The needle force distribution is used for graphical and haptic real-time simulations of needle insertion. Since the force displacement relationship is required only along the needle, a condensation technique is shown to achieve very fast interactive simulations. Stiffness matrix changes corresponding to changes in boundary conditions and material coordinate frames are performed using low-rank matrix updates.
pA  
A01 01  1    @0 1042-296X
A03   1    @0 IEEE trans. robot. autom.
A05       @2 19
A06       @2 5
A08 01  1  ENG  @1 Needle insertion modeling and simulation
A11 01  1    @1 DIMAIO (Simon P.)
A11 02  1    @1 SALCUDEAN (S. E.)
A14 01      @1 Department of Electrical and Computer Engineering, University of British Columbia @2 Vancouver, BC V6T 1Z4 @3 CAN @Z 1 aut. @Z 2 aut.
A20       @1 864-875
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 21023
A44       @0 A300
A45       @0 39 ref.
A47 01  1    @0 04-0036801
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on robotics and automation
A66 01      @0 USA
C01 01    ENG  @0 A methodology for estimating the force distribution that occurs along a needle shaft during insertion is described. An experimental system for measuring planar tissue phantom deformation during needle insertions has been developed and is presented. A two-dimensional linear elastostatic material model, discretised using the finite element method, is used to derive contact force information that is not directly measurable. This approach provides a method for quantifying the needle forces and soft tissue deformations that occur during general needle trajectories in multiple dimensions. The needle force distribution is used for graphical and haptic real-time simulations of needle insertion. Since the force displacement relationship is required only along the needle, a condensation technique is shown to achieve very fast interactive simulations. Stiffness matrix changes corresponding to changes in boundary conditions and material coordinate frames are performed using low-rank matrix updates.
C02 01  X    @0 001D02D05
C02 02  X    @0 001D02D13
C03 01  X  FRE  @0 Temps réel @5 01
C03 01  X  ENG  @0 Real time @5 01
C03 01  X  SPA  @0 Tiempo real @5 01
C03 02  X  FRE  @0 Ajustement modèle @5 02
C03 02  X  ENG  @0 Model matching @5 02
C03 02  X  SPA  @0 Ajustamiento modelo @5 02
C03 03  X  FRE  @0 Arbre transmission @5 11
C03 03  X  ENG  @0 Shaft @5 11
C03 03  X  SPA  @0 Arbol transmisión @5 11
C03 04  X  FRE  @0 Sensibilité tactile @5 12
C03 04  X  ENG  @0 Tactile sensitivity @5 12
C03 04  X  SPA  @0 Sensibilidad tactil @5 12
C03 05  X  FRE  @0 Insertion @5 13
C03 05  X  ENG  @0 Insertion @5 13
C03 05  X  SPA  @0 Inserción @5 13
C03 06  X  FRE  @0 Contrainte contact @5 14
C03 06  X  ENG  @0 Contact stress @5 14
C03 06  X  SPA  @0 Tensión contacto @5 14
C03 07  X  FRE  @0 Modélisation @5 21
C03 07  X  ENG  @0 Modeling @5 21
C03 07  X  SPA  @0 Modelización @5 21
C03 08  X  FRE  @0 Modèle 2 dimensions @5 22
C03 08  X  ENG  @0 Two dimensional model @5 22
C03 08  X  SPA  @0 Modelo 2 dimensiones @5 22
C03 09  X  FRE  @0 Méthode élément fini @5 23
C03 09  X  ENG  @0 Finite element method @5 23
C03 09  X  SPA  @0 Método elemento finito @5 23
C03 10  X  FRE  @0 Méthode numérique @5 24
C03 10  X  ENG  @0 Numerical method @5 24
C03 10  X  SPA  @0 Método numérico @5 24
C03 11  X  FRE  @0 Condensation @5 25
C03 11  X  ENG  @0 Condensation @5 25
C03 11  X  SPA  @0 Condensación @5 25
C03 12  X  FRE  @0 Condition aux limites @5 26
C03 12  X  ENG  @0 Boundary condition @5 26
C03 12  X  SPA  @0 Condiciones límites @5 26
C03 13  X  FRE  @0 Matrice rigidité @5 27
C03 13  X  ENG  @0 Stiffness matrix @5 27
C03 13  X  SPA  @0 Matriz rigidez @5 27
N21       @1 026
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0036801

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Needle insertion modeling and simulation</title>
<author>
<name sortKey="Dimaio, Simon P" sort="Dimaio, Simon P" uniqKey="Dimaio S" first="Simon P." last="Dimaio">Simon P. Dimaio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Salcudean, S E" sort="Salcudean, S E" uniqKey="Salcudean S" first="S. E." last="Salcudean">S. E. Salcudean</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0036801</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0036801 CRAN</idno>
<idno type="RBID">Pascal:04-0036801</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001122</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000387</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Needle insertion modeling and simulation</title>
<author>
<name sortKey="Dimaio, Simon P" sort="Dimaio, Simon P" uniqKey="Dimaio S" first="Simon P." last="Dimaio">Simon P. Dimaio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Salcudean, S E" sort="Salcudean, S E" uniqKey="Salcudean S" first="S. E." last="Salcudean">S. E. Salcudean</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on robotics and automation</title>
<title level="j" type="abbreviated">IEEE trans. robot. autom.</title>
<idno type="ISSN">1042-296X</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on robotics and automation</title>
<title level="j" type="abbreviated">IEEE trans. robot. autom.</title>
<idno type="ISSN">1042-296X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boundary condition</term>
<term>Condensation</term>
<term>Contact stress</term>
<term>Finite element method</term>
<term>Insertion</term>
<term>Model matching</term>
<term>Modeling</term>
<term>Numerical method</term>
<term>Real time</term>
<term>Shaft</term>
<term>Stiffness matrix</term>
<term>Tactile sensitivity</term>
<term>Two dimensional model</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Temps réel</term>
<term>Ajustement modèle</term>
<term>Arbre transmission</term>
<term>Sensibilité tactile</term>
<term>Insertion</term>
<term>Contrainte contact</term>
<term>Modélisation</term>
<term>Modèle 2 dimensions</term>
<term>Méthode élément fini</term>
<term>Méthode numérique</term>
<term>Condensation</term>
<term>Condition aux limites</term>
<term>Matrice rigidité</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Condensation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A methodology for estimating the force distribution that occurs along a needle shaft during insertion is described. An experimental system for measuring planar tissue phantom deformation during needle insertions has been developed and is presented. A two-dimensional linear elastostatic material model, discretised using the finite element method, is used to derive contact force information that is not directly measurable. This approach provides a method for quantifying the needle forces and soft tissue deformations that occur during general needle trajectories in multiple dimensions. The needle force distribution is used for graphical and haptic real-time simulations of needle insertion. Since the force displacement relationship is required only along the needle, a condensation technique is shown to achieve very fast interactive simulations. Stiffness matrix changes corresponding to changes in boundary conditions and material coordinate frames are performed using low-rank matrix updates.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1042-296X</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. robot. autom.</s0>
</fA03>
<fA05>
<s2>19</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Needle insertion modeling and simulation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DIMAIO (Simon P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SALCUDEAN (S. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>864-875</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023</s2>
</fA43>
<fA44>
<s0>A300</s0>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0036801</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on robotics and automation</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A methodology for estimating the force distribution that occurs along a needle shaft during insertion is described. An experimental system for measuring planar tissue phantom deformation during needle insertions has been developed and is presented. A two-dimensional linear elastostatic material model, discretised using the finite element method, is used to derive contact force information that is not directly measurable. This approach provides a method for quantifying the needle forces and soft tissue deformations that occur during general needle trajectories in multiple dimensions. The needle force distribution is used for graphical and haptic real-time simulations of needle insertion. Since the force displacement relationship is required only along the needle, a condensation technique is shown to achieve very fast interactive simulations. Stiffness matrix changes corresponding to changes in boundary conditions and material coordinate frames are performed using low-rank matrix updates.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D13</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Real time</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ajustement modèle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Model matching</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ajustamiento modelo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Arbre transmission</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Shaft</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Arbol transmisión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Insertion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Insertion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Inserción</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Contrainte contact</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Contact stress</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tensión contacto</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Modèle 2 dimensions</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Two dimensional model</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Modelo 2 dimensiones</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Condensation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Condensation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Condensación</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Condition aux limites</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Boundary condition</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Condiciones límites</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Matrice rigidité</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stiffness matrix</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Matriz rigidez</s0>
<s5>27</s5>
</fC03>
<fN21>
<s1>026</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000387 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000387 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0036801
   |texte=   Needle insertion modeling and simulation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024