Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic direct-drive robot control scheme in virtual reality

Identifieur interne : 000296 ( PascalFrancis/Curation ); précédent : 000295; suivant : 000297

Haptic direct-drive robot control scheme in virtual reality

Auteurs : M. G. Her [Taïwan] ; K. S. Hsu ; T. S. Lan ; M. Karkoub

Source :

RBID : Pascal:03-0044584

Descripteurs français

English descriptors

Abstract

This paper explores the use of a 2-D (Direct-Drive Arm) manipulator for mechanism design applications based on virtual reality (VR). This article reviews the system include a user interface, a simulator, and a robot control scheme. The user interface is a combination of a virtual clay environment and human arm dynamics via robot effector handler. The model of the VR system is built based on a haptic interface device behavior that enables the operator to feel the actual force feedback from the virtual environment just as s/he would from the real environment. A primary stabilizing controller is used to develop a haptic interface device where realistic simulations of the dynamic interaction forces between a human operator and the simulated virtual object/mechanism are required. The stability and performance of the system are studied and analyzed based on the Nyquist stability criterion. Experiments on cutting virtual clay are used to validate the theoretical developments. It was shown that the experimental and theoretical results are in good agreement and that the designed controller is robust to constrained/unconstrained environment.
pA  
A01 01  1    @0 0921-0296
A03   1    @0 J Intell Rob Syst Theor Appl
A05       @2 35
A06       @2 3
A08 01  1  ENG  @1 Haptic direct-drive robot control scheme in virtual reality
A11 01  1    @1 HER (M. G.)
A11 02  1    @1 HSU (K. S.)
A11 03  1    @1 LAN (T. S.)
A11 04  1    @1 KARKOUB (M.)
A14 01      @1 Department of Mechanical Engineering Tatung University @2 Taipei, 10451 @3 TWN @Z 1 aut.
A20       @1 247-264
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 21882
A44       @0 A100
A45       @0 22 Refs.
A47 01  1    @0 03-0044584
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Intelligent and Robotic Systems: Theory and Applications
A66 01      @0 NLD
C01 01    ENG  @0 This paper explores the use of a 2-D (Direct-Drive Arm) manipulator for mechanism design applications based on virtual reality (VR). This article reviews the system include a user interface, a simulator, and a robot control scheme. The user interface is a combination of a virtual clay environment and human arm dynamics via robot effector handler. The model of the VR system is built based on a haptic interface device behavior that enables the operator to feel the actual force feedback from the virtual environment just as s/he would from the real environment. A primary stabilizing controller is used to develop a haptic interface device where realistic simulations of the dynamic interaction forces between a human operator and the simulated virtual object/mechanism are required. The stability and performance of the system are studied and analyzed based on the Nyquist stability criterion. Experiments on cutting virtual clay are used to validate the theoretical developments. It was shown that the experimental and theoretical results are in good agreement and that the designed controller is robust to constrained/unconstrained environment.
C02 01  X    @0 001D02D
C02 02  X    @0 001D02C02
C02 03  X    @0 001D02D11
C02 04  X    @0 001D03J03
C03 01  1  ENG  @0 Haptic robot control @4 INC
C03 02  1  ENG  @0 Direct drive robot control @4 INC
C03 03  1  ENG  @0 Two dimensional manipulator @4 INC
C03 04  1  ENG  @0 Direct drive arm manipulator @4 INC
C03 05  1  ENG  @0 Human arm dynamics @4 INC
C03 06  1  ENG  @0 Robot effector handler @4 INC
C03 07  1  ENG  @0 Nyquist stability criterion @4 INC
C03 08  1  FRE  @0 Théorie
C03 08  1  ENG  @0 Theory
C03 09  1  FRE  @0 Robot intelligent
C03 09  1  ENG  @0 Intelligent robots
C03 10  1  FRE  @0 Interface haptique
C03 10  1  ENG  @0 Haptic interfaces
C03 11  1  FRE  @0 Réalité virtuelle
C03 11  1  ENG  @0 Virtual reality
C03 12  1  FRE  @0 Modèle 2 dimensions
C03 12  1  ENG  @0 Two dimensional
C03 13  1  FRE  @0 Manipulateur
C03 13  1  ENG  @0 Manipulators
C03 14  1  FRE  @0 Synthèse système commande
C03 14  1  ENG  @0 Control system synthesis
C03 15  1  FRE  @0 Relation homme machine
C03 15  1  ENG  @0 Human computer interaction
C03 16  1  FRE  @0 Commande force
C03 16  1  ENG  @0 Force control
C03 17  1  FRE  @0 Commande contre réaction
C03 17  1  ENG  @0 Feedback control
C03 18  1  FRE  @0 Stabilité système
C03 18  1  ENG  @0 System stability
C03 19  1  FRE  @0 Théorie contrainte
C03 19  1  ENG  @0 Constraint theory
C03 20  1  FRE  @0 Contrôle intelligent @3 P
C03 20  1  ENG  @0 Intelligent control @3 P
C03 21  1  FRE  @0 Expérience
C03 21  1  ENG  @0 Experiments
N21       @1 027

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0044584

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptic direct-drive robot control scheme in virtual reality</title>
<author>
<name sortKey="Her, M G" sort="Her, M G" uniqKey="Her M" first="M. G." last="Her">M. G. Her</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering Tatung University</s1>
<s2>Taipei, 10451</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
</affiliation>
</author>
<author>
<name sortKey="Hsu, K S" sort="Hsu, K S" uniqKey="Hsu K" first="K. S." last="Hsu">K. S. Hsu</name>
</author>
<author>
<name sortKey="Lan, T S" sort="Lan, T S" uniqKey="Lan T" first="T. S." last="Lan">T. S. Lan</name>
</author>
<author>
<name sortKey="Karkoub, M" sort="Karkoub, M" uniqKey="Karkoub M" first="M." last="Karkoub">M. Karkoub</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0044584</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 03-0044584 EI</idno>
<idno type="RBID">Pascal:03-0044584</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001215</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000296</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptic direct-drive robot control scheme in virtual reality</title>
<author>
<name sortKey="Her, M G" sort="Her, M G" uniqKey="Her M" first="M. G." last="Her">M. G. Her</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering Tatung University</s1>
<s2>Taipei, 10451</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
</affiliation>
</author>
<author>
<name sortKey="Hsu, K S" sort="Hsu, K S" uniqKey="Hsu K" first="K. S." last="Hsu">K. S. Hsu</name>
</author>
<author>
<name sortKey="Lan, T S" sort="Lan, T S" uniqKey="Lan T" first="T. S." last="Lan">T. S. Lan</name>
</author>
<author>
<name sortKey="Karkoub, M" sort="Karkoub, M" uniqKey="Karkoub M" first="M." last="Karkoub">M. Karkoub</name>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Intelligent and Robotic Systems: Theory and Applications</title>
<title level="j" type="abbreviated">J Intell Rob Syst Theor Appl</title>
<idno type="ISSN">0921-0296</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Intelligent and Robotic Systems: Theory and Applications</title>
<title level="j" type="abbreviated">J Intell Rob Syst Theor Appl</title>
<idno type="ISSN">0921-0296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Constraint theory</term>
<term>Control system synthesis</term>
<term>Direct drive arm manipulator</term>
<term>Direct drive robot control</term>
<term>Experiments</term>
<term>Feedback control</term>
<term>Force control</term>
<term>Haptic interfaces</term>
<term>Haptic robot control</term>
<term>Human arm dynamics</term>
<term>Human computer interaction</term>
<term>Intelligent control</term>
<term>Intelligent robots</term>
<term>Manipulators</term>
<term>Nyquist stability criterion</term>
<term>Robot effector handler</term>
<term>System stability</term>
<term>Theory</term>
<term>Two dimensional</term>
<term>Two dimensional manipulator</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Théorie</term>
<term>Robot intelligent</term>
<term>Interface haptique</term>
<term>Réalité virtuelle</term>
<term>Modèle 2 dimensions</term>
<term>Manipulateur</term>
<term>Synthèse système commande</term>
<term>Relation homme machine</term>
<term>Commande force</term>
<term>Commande contre réaction</term>
<term>Stabilité système</term>
<term>Théorie contrainte</term>
<term>Contrôle intelligent</term>
<term>Expérience</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Réalité virtuelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper explores the use of a 2-D (Direct-Drive Arm) manipulator for mechanism design applications based on virtual reality (VR). This article reviews the system include a user interface, a simulator, and a robot control scheme. The user interface is a combination of a virtual clay environment and human arm dynamics via robot effector handler. The model of the VR system is built based on a haptic interface device behavior that enables the operator to feel the actual force feedback from the virtual environment just as s/he would from the real environment. A primary stabilizing controller is used to develop a haptic interface device where realistic simulations of the dynamic interaction forces between a human operator and the simulated virtual object/mechanism are required. The stability and performance of the system are studied and analyzed based on the Nyquist stability criterion. Experiments on cutting virtual clay are used to validate the theoretical developments. It was shown that the experimental and theoretical results are in good agreement and that the designed controller is robust to constrained/unconstrained environment.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-0296</s0>
</fA01>
<fA03 i2="1">
<s0>J Intell Rob Syst Theor Appl</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptic direct-drive robot control scheme in virtual reality</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HER (M. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HSU (K. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAN (T. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KARKOUB (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering Tatung University</s1>
<s2>Taipei, 10451</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>247-264</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21882</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>22 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0044584</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Intelligent and Robotic Systems: Theory and Applications</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper explores the use of a 2-D (Direct-Drive Arm) manipulator for mechanism design applications based on virtual reality (VR). This article reviews the system include a user interface, a simulator, and a robot control scheme. The user interface is a combination of a virtual clay environment and human arm dynamics via robot effector handler. The model of the VR system is built based on a haptic interface device behavior that enables the operator to feel the actual force feedback from the virtual environment just as s/he would from the real environment. A primary stabilizing controller is used to develop a haptic interface device where realistic simulations of the dynamic interaction forces between a human operator and the simulated virtual object/mechanism are required. The stability and performance of the system are studied and analyzed based on the Nyquist stability criterion. Experiments on cutting virtual clay are used to validate the theoretical developments. It was shown that the experimental and theoretical results are in good agreement and that the designed controller is robust to constrained/unconstrained environment.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C02</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03J03</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Haptic robot control</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Direct drive robot control</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Two dimensional manipulator</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>Direct drive arm manipulator</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>Human arm dynamics</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Robot effector handler</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Nyquist stability criterion</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Théorie</s0>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Theory</s0>
</fC03>
<fC03 i1="09" i2="1" l="FRE">
<s0>Robot intelligent</s0>
</fC03>
<fC03 i1="09" i2="1" l="ENG">
<s0>Intelligent robots</s0>
</fC03>
<fC03 i1="10" i2="1" l="FRE">
<s0>Interface haptique</s0>
</fC03>
<fC03 i1="10" i2="1" l="ENG">
<s0>Haptic interfaces</s0>
</fC03>
<fC03 i1="11" i2="1" l="FRE">
<s0>Réalité virtuelle</s0>
</fC03>
<fC03 i1="11" i2="1" l="ENG">
<s0>Virtual reality</s0>
</fC03>
<fC03 i1="12" i2="1" l="FRE">
<s0>Modèle 2 dimensions</s0>
</fC03>
<fC03 i1="12" i2="1" l="ENG">
<s0>Two dimensional</s0>
</fC03>
<fC03 i1="13" i2="1" l="FRE">
<s0>Manipulateur</s0>
</fC03>
<fC03 i1="13" i2="1" l="ENG">
<s0>Manipulators</s0>
</fC03>
<fC03 i1="14" i2="1" l="FRE">
<s0>Synthèse système commande</s0>
</fC03>
<fC03 i1="14" i2="1" l="ENG">
<s0>Control system synthesis</s0>
</fC03>
<fC03 i1="15" i2="1" l="FRE">
<s0>Relation homme machine</s0>
</fC03>
<fC03 i1="15" i2="1" l="ENG">
<s0>Human computer interaction</s0>
</fC03>
<fC03 i1="16" i2="1" l="FRE">
<s0>Commande force</s0>
</fC03>
<fC03 i1="16" i2="1" l="ENG">
<s0>Force control</s0>
</fC03>
<fC03 i1="17" i2="1" l="FRE">
<s0>Commande contre réaction</s0>
</fC03>
<fC03 i1="17" i2="1" l="ENG">
<s0>Feedback control</s0>
</fC03>
<fC03 i1="18" i2="1" l="FRE">
<s0>Stabilité système</s0>
</fC03>
<fC03 i1="18" i2="1" l="ENG">
<s0>System stability</s0>
</fC03>
<fC03 i1="19" i2="1" l="FRE">
<s0>Théorie contrainte</s0>
</fC03>
<fC03 i1="19" i2="1" l="ENG">
<s0>Constraint theory</s0>
</fC03>
<fC03 i1="20" i2="1" l="FRE">
<s0>Contrôle intelligent</s0>
<s3>P</s3>
</fC03>
<fC03 i1="20" i2="1" l="ENG">
<s0>Intelligent control</s0>
<s3>P</s3>
</fC03>
<fC03 i1="21" i2="1" l="FRE">
<s0>Expérience</s0>
</fC03>
<fC03 i1="21" i2="1" l="ENG">
<s0>Experiments</s0>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000296 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000296 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:03-0044584
   |texte=   Haptic direct-drive robot control scheme in virtual reality
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024