Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A probabilistic representation of human workspace for use in the design of human interface mechanisms

Identifieur interne : 001346 ( PascalFrancis/Corpus ); précédent : 001345; suivant : 001347

A probabilistic representation of human workspace for use in the design of human interface mechanisms

Auteurs : Steven C. Venema ; Blake Hannaford

Source :

RBID : Pascal:01-0484806

Descripteurs français

English descriptors

Abstract

In designing kinematic mechanisms such as haptic devices for human usability, we must carefully consider human motion range. However, size variations across the human population significantly complicates anthropocentric design analysis. In this paper we develop a probabilistic representation for mechanism reachable workspace which is based on a kinematic model containing stochastically defined parameters. Using anthropometric data, we show how this "stochastic reachable workspace" may be derived, and present a case study for the human finger. This representation of human reachable workspace may then be used to more accurately design human interface mechanisms which accommodate a wide variety of users. The results of our case study on the reachable workspace of the human finger were used in the design of a fingertip haptic display.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1083-4435
A03   1    @0 IEEE/ASME trans. mechatron.
A05       @2 6
A06       @2 3
A08 01  1  ENG  @1 A probabilistic representation of human workspace for use in the design of human interface mechanisms
A11 01  1    @1 VENEMA (Steven C.)
A11 02  1    @1 HANNAFORD (Blake)
A14 01      @1 Mathematics and Computing Technologies Organization, Boeing Company @2 Seattle, WA 98124 @3 USA @Z 1 aut.
A14 02      @1 Department of Electrical Engineering, University of Washington @2 Seattle, WA 98195 @3 USA @Z 2 aut.
A20       @1 286-294
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 26423
A44       @0 A300
A45       @0 28 ref.
A47 01  1    @0 01-0484806
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE/ASME transactions on mechatronics
A66 01      @0 USA
C01 01    ENG  @0 In designing kinematic mechanisms such as haptic devices for human usability, we must carefully consider human motion range. However, size variations across the human population significantly complicates anthropocentric design analysis. In this paper we develop a probabilistic representation for mechanism reachable workspace which is based on a kinematic model containing stochastically defined parameters. Using anthropometric data, we show how this "stochastic reachable workspace" may be derived, and present a case study for the human finger. This representation of human reachable workspace may then be used to more accurately design human interface mechanisms which accommodate a wide variety of users. The results of our case study on the reachable workspace of the human finger were used in the design of a fingertip haptic display.
C02 01  X    @0 001D02D11
C02 02  X    @0 001D12E06
C03 01  X  FRE  @0 Homme @5 01
C03 01  X  ENG  @0 Human @5 01
C03 01  X  SPA  @0 Hombre @5 01
C03 02  X  FRE  @0 Anthropométrie @5 02
C03 02  X  ENG  @0 Anthropometry @5 02
C03 02  X  SPA  @0 Antropometría @5 02
C03 03  X  FRE  @0 Ergonomie @5 03
C03 03  X  ENG  @0 Ergonomics @5 03
C03 03  X  SPA  @0 Ergonomía @5 03
C03 04  X  FRE  @0 Robotique @5 09
C03 04  X  ENG  @0 Robotics @5 09
C03 04  X  SPA  @0 Robótica @5 09
C03 05  X  FRE  @0 Téléopération @5 10
C03 05  X  ENG  @0 Remote operation @5 10
C03 05  X  SPA  @0 Teleacción @5 10
C03 06  X  FRE  @0 Interface utilisateur @5 12
C03 06  X  ENG  @0 User interface @5 12
C03 06  X  SPA  @0 Interfase usuario @5 12
C03 07  X  FRE  @0 Sensibilité tactile @5 13
C03 07  X  ENG  @0 Tactile sensitivity @5 13
C03 07  X  SPA  @0 Sensibilidad tactil @5 13
C03 08  X  FRE  @0 Synthèse mécanisme @5 16
C03 08  X  ENG  @0 Mechanism synthesis @5 16
C03 08  X  SPA  @0 Síntesis mecanismo @5 16
C03 09  X  FRE  @0 Doigt @5 17
C03 09  X  ENG  @0 Finger @5 17
C03 09  X  SPA  @0 Dedo @5 17
C03 10  X  FRE  @0 Atteignabilité @5 18
C03 10  X  ENG  @0 Reachability @5 18
C03 10  X  SPA  @0 Asequibilidad @5 18
C03 11  X  FRE  @0 Domaine travail @4 CD @5 96
C03 11  X  ENG  @0 Workspace @4 CD @5 96
N21       @1 344

Format Inist (serveur)

NO : PASCAL 01-0484806 CRAN
ET : A probabilistic representation of human workspace for use in the design of human interface mechanisms
AU : VENEMA (Steven C.); HANNAFORD (Blake)
AF : Mathematics and Computing Technologies Organization, Boeing Company/Seattle, WA 98124/Etats-Unis (1 aut.); Department of Electrical Engineering, University of Washington/Seattle, WA 98195/Etats-Unis (2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE/ASME transactions on mechatronics; ISSN 1083-4435; Etats-Unis; Da. 2001; Vol. 6; No. 3; Pp. 286-294; Bibl. 28 ref.
LA : Anglais
EA : In designing kinematic mechanisms such as haptic devices for human usability, we must carefully consider human motion range. However, size variations across the human population significantly complicates anthropocentric design analysis. In this paper we develop a probabilistic representation for mechanism reachable workspace which is based on a kinematic model containing stochastically defined parameters. Using anthropometric data, we show how this "stochastic reachable workspace" may be derived, and present a case study for the human finger. This representation of human reachable workspace may then be used to more accurately design human interface mechanisms which accommodate a wide variety of users. The results of our case study on the reachable workspace of the human finger were used in the design of a fingertip haptic display.
CC : 001D02D11; 001D12E06
FD : Homme; Anthropométrie; Ergonomie; Robotique; Téléopération; Interface utilisateur; Sensibilité tactile; Synthèse mécanisme; Doigt; Atteignabilité; Domaine travail
ED : Human; Anthropometry; Ergonomics; Robotics; Remote operation; User interface; Tactile sensitivity; Mechanism synthesis; Finger; Reachability; Workspace
SD : Hombre; Antropometría; Ergonomía; Robótica; Teleacción; Interfase usuario; Sensibilidad tactil; Síntesis mecanismo; Dedo; Asequibilidad
LO : INIST-26423
ID : 01-0484806

Links to Exploration step

Pascal:01-0484806

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A probabilistic representation of human workspace for use in the design of human interface mechanisms</title>
<author>
<name sortKey="Venema, Steven C" sort="Venema, Steven C" uniqKey="Venema S" first="Steven C." last="Venema">Steven C. Venema</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Mathematics and Computing Technologies Organization, Boeing Company</s1>
<s2>Seattle, WA 98124</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0484806</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0484806 CRAN</idno>
<idno type="RBID">Pascal:01-0484806</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001346</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A probabilistic representation of human workspace for use in the design of human interface mechanisms</title>
<author>
<name sortKey="Venema, Steven C" sort="Venema, Steven C" uniqKey="Venema S" first="Steven C." last="Venema">Steven C. Venema</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Mathematics and Computing Technologies Organization, Boeing Company</s1>
<s2>Seattle, WA 98124</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE/ASME transactions on mechatronics</title>
<title level="j" type="abbreviated">IEEE/ASME trans. mechatron.</title>
<idno type="ISSN">1083-4435</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE/ASME transactions on mechatronics</title>
<title level="j" type="abbreviated">IEEE/ASME trans. mechatron.</title>
<idno type="ISSN">1083-4435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthropometry</term>
<term>Ergonomics</term>
<term>Finger</term>
<term>Human</term>
<term>Mechanism synthesis</term>
<term>Reachability</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
<term>Workspace</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Homme</term>
<term>Anthropométrie</term>
<term>Ergonomie</term>
<term>Robotique</term>
<term>Téléopération</term>
<term>Interface utilisateur</term>
<term>Sensibilité tactile</term>
<term>Synthèse mécanisme</term>
<term>Doigt</term>
<term>Atteignabilité</term>
<term>Domaine travail</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In designing kinematic mechanisms such as haptic devices for human usability, we must carefully consider human motion range. However, size variations across the human population significantly complicates anthropocentric design analysis. In this paper we develop a probabilistic representation for mechanism reachable workspace which is based on a kinematic model containing stochastically defined parameters. Using anthropometric data, we show how this "stochastic reachable workspace" may be derived, and present a case study for the human finger. This representation of human reachable workspace may then be used to more accurately design human interface mechanisms which accommodate a wide variety of users. The results of our case study on the reachable workspace of the human finger were used in the design of a fingertip haptic display.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1083-4435</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE/ASME trans. mechatron.</s0>
</fA03>
<fA05>
<s2>6</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A probabilistic representation of human workspace for use in the design of human interface mechanisms</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VENEMA (Steven C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HANNAFORD (Blake)</s1>
</fA11>
<fA14 i1="01">
<s1>Mathematics and Computing Technologies Organization, Boeing Company</s1>
<s2>Seattle, WA 98124</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>286-294</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26423</s2>
</fA43>
<fA44>
<s0>A300</s0>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0484806</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE/ASME transactions on mechatronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In designing kinematic mechanisms such as haptic devices for human usability, we must carefully consider human motion range. However, size variations across the human population significantly complicates anthropocentric design analysis. In this paper we develop a probabilistic representation for mechanism reachable workspace which is based on a kinematic model containing stochastically defined parameters. Using anthropometric data, we show how this "stochastic reachable workspace" may be derived, and present a case study for the human finger. This representation of human reachable workspace may then be used to more accurately design human interface mechanisms which accommodate a wide variety of users. The results of our case study on the reachable workspace of the human finger were used in the design of a fingertip haptic display.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D12E06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Homme</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Human</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Anthropométrie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Anthropometry</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Antropometría</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ergonomie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ergonomics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ergonomía</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>User interface</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Synthèse mécanisme</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mechanism synthesis</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Síntesis mecanismo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Doigt</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Finger</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dedo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Atteignabilité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Reachability</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Asequibilidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Domaine travail</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Workspace</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>344</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 01-0484806 CRAN</NO>
<ET>A probabilistic representation of human workspace for use in the design of human interface mechanisms</ET>
<AU>VENEMA (Steven C.); HANNAFORD (Blake)</AU>
<AF>Mathematics and Computing Technologies Organization, Boeing Company/Seattle, WA 98124/Etats-Unis (1 aut.); Department of Electrical Engineering, University of Washington/Seattle, WA 98195/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE/ASME transactions on mechatronics; ISSN 1083-4435; Etats-Unis; Da. 2001; Vol. 6; No. 3; Pp. 286-294; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>In designing kinematic mechanisms such as haptic devices for human usability, we must carefully consider human motion range. However, size variations across the human population significantly complicates anthropocentric design analysis. In this paper we develop a probabilistic representation for mechanism reachable workspace which is based on a kinematic model containing stochastically defined parameters. Using anthropometric data, we show how this "stochastic reachable workspace" may be derived, and present a case study for the human finger. This representation of human reachable workspace may then be used to more accurately design human interface mechanisms which accommodate a wide variety of users. The results of our case study on the reachable workspace of the human finger were used in the design of a fingertip haptic display.</EA>
<CC>001D02D11; 001D12E06</CC>
<FD>Homme; Anthropométrie; Ergonomie; Robotique; Téléopération; Interface utilisateur; Sensibilité tactile; Synthèse mécanisme; Doigt; Atteignabilité; Domaine travail</FD>
<ED>Human; Anthropometry; Ergonomics; Robotics; Remote operation; User interface; Tactile sensitivity; Mechanism synthesis; Finger; Reachability; Workspace</ED>
<SD>Hombre; Antropometría; Ergonomía; Robótica; Teleacción; Interfase usuario; Sensibilidad tactil; Síntesis mecanismo; Dedo; Asequibilidad</SD>
<LO>INIST-26423</LO>
<ID>01-0484806</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001346 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001346 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0484806
   |texte=   A probabilistic representation of human workspace for use in the design of human interface mechanisms
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024