Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal kinematic design of a haptic pen

Identifieur interne : 001344 ( PascalFrancis/Corpus ); précédent : 001343; suivant : 001345

Optimal kinematic design of a haptic pen

Auteurs : Leo J. Stocco ; Septimiu E. Salcudean ; Farrokh Sassani

Source :

RBID : Pascal:01-0485532

Descripteurs français

English descriptors

Abstract

This paper investigates the performance demands of a haptic interface and shows how this information can be used to design a suitable mechanism. A design procedure, previously developed by the authors, consisting of a global isotropy index and a discrete optimization algorithm, allows one to compare a range of geometric variables, actuator scale factors, and even different robot devices for optimum performance. The approach is used to compare the performance of three 6-DOF robots including two wellknown parallel platform robots and a novel hybrid robot called the Twin-Pantograph in terms of their semidextrous workspaces and static force capabilities. Since the Twin-Pantograph yields the best results, its design is refined to address practical constraints and it is implemented as a haptic pen. The performance of the resulting design was measured and is also presented.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1083-4435
A03   1    @0 IEEE/ASME trans. mechatron.
A05       @2 6
A06       @2 3
A08 01  1  ENG  @1 Optimal kinematic design of a haptic pen
A11 01  1    @1 STOCCO (Leo J.)
A11 02  1    @1 SALCUDEAN (Septimiu E.)
A11 03  1    @1 SASSANI (Farrokh)
A14 01      @1 Department of Electrical and Computer Engineering, University of British Columbia @2 Vancouver, BC V6T 1Z4 @3 CAN @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @1 210-220
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 26423
A44       @0 A300
A45       @0 30 ref.
A47 01  1    @0 01-0485532
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE/ASME transactions on mechatronics
A66 01      @0 USA
C01 01    ENG  @0 This paper investigates the performance demands of a haptic interface and shows how this information can be used to design a suitable mechanism. A design procedure, previously developed by the authors, consisting of a global isotropy index and a discrete optimization algorithm, allows one to compare a range of geometric variables, actuator scale factors, and even different robot devices for optimum performance. The approach is used to compare the performance of three 6-DOF robots including two wellknown parallel platform robots and a novel hybrid robot called the Twin-Pantograph in terms of their semidextrous workspaces and static force capabilities. Since the Twin-Pantograph yields the best results, its design is refined to address practical constraints and it is implemented as a haptic pen. The performance of the resulting design was measured and is also presented.
C02 01  X    @0 001D12E06
C02 02  X    @0 001D02B04
C02 03  X    @0 001D02D11
C03 01  X  FRE  @0 Robotique @5 02
C03 01  X  ENG  @0 Robotics @5 02
C03 01  X  SPA  @0 Robótica @5 02
C03 02  X  FRE  @0 Téléopération @5 03
C03 02  X  ENG  @0 Remote operation @5 03
C03 02  X  SPA  @0 Teleacción @5 03
C03 03  X  FRE  @0 Interface utilisateur @5 04
C03 03  X  ENG  @0 User interface @5 04
C03 03  X  SPA  @0 Interfase usuario @5 04
C03 04  X  FRE  @0 Sensibilité tactile @5 05
C03 04  X  ENG  @0 Tactile sensitivity @5 05
C03 04  X  SPA  @0 Sensibilidad tactil @5 05
C03 05  X  FRE  @0 Synthèse mécanisme @5 09
C03 05  X  ENG  @0 Mechanism synthesis @5 09
C03 05  X  SPA  @0 Síntesis mecanismo @5 09
C03 06  X  FRE  @0 Mécanisme articulé @5 10
C03 06  X  ENG  @0 Linkage mechanism @5 10
C03 06  X  SPA  @0 Mecanismo articulado @5 10
C03 07  X  FRE  @0 Système parallèle @5 11
C03 07  X  ENG  @0 Parallel system @5 11
C03 07  X  SPA  @0 Sistema paralelo @5 11
C03 08  X  FRE  @0 Pantographe @5 13
C03 08  X  ENG  @0 Pantograph @5 13
C03 08  X  SPA  @0 Pantógrafo @5 13
C03 09  X  FRE  @0 Cinématique @5 14
C03 09  X  ENG  @0 Kinematics @5 14
C03 09  X  SPA  @0 Cinemática @5 14
C03 10  X  FRE  @0 Méthode numérique @5 16
C03 10  X  ENG  @0 Numerical method @5 16
C03 10  X  SPA  @0 Método numérico @5 16
C03 11  X  FRE  @0 Optimisation @5 17
C03 11  X  ENG  @0 Optimization @5 17
C03 11  X  SPA  @0 Optimización @5 17
C03 12  X  FRE  @0 Problème minimax @5 18
C03 12  X  ENG  @0 Minimax problem @5 18
C03 12  X  SPA  @0 Problema minimax @5 18
C03 13  X  FRE  @0 Mécanisme parallèle @4 CD @5 96
C03 13  X  ENG  @0 Parallel mechanism @4 CD @5 96
N21       @1 344

Format Inist (serveur)

NO : PASCAL 01-0485532 CRAN
ET : Optimal kinematic design of a haptic pen
AU : STOCCO (Leo J.); SALCUDEAN (Septimiu E.); SASSANI (Farrokh)
AF : Department of Electrical and Computer Engineering, University of British Columbia/Vancouver, BC V6T 1Z4/Canada (1 aut., 2 aut., 3 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE/ASME transactions on mechatronics; ISSN 1083-4435; Etats-Unis; Da. 2001; Vol. 6; No. 3; Pp. 210-220; Bibl. 30 ref.
LA : Anglais
EA : This paper investigates the performance demands of a haptic interface and shows how this information can be used to design a suitable mechanism. A design procedure, previously developed by the authors, consisting of a global isotropy index and a discrete optimization algorithm, allows one to compare a range of geometric variables, actuator scale factors, and even different robot devices for optimum performance. The approach is used to compare the performance of three 6-DOF robots including two wellknown parallel platform robots and a novel hybrid robot called the Twin-Pantograph in terms of their semidextrous workspaces and static force capabilities. Since the Twin-Pantograph yields the best results, its design is refined to address practical constraints and it is implemented as a haptic pen. The performance of the resulting design was measured and is also presented.
CC : 001D12E06; 001D02B04; 001D02D11
FD : Robotique; Téléopération; Interface utilisateur; Sensibilité tactile; Synthèse mécanisme; Mécanisme articulé; Système parallèle; Pantographe; Cinématique; Méthode numérique; Optimisation; Problème minimax; Mécanisme parallèle
ED : Robotics; Remote operation; User interface; Tactile sensitivity; Mechanism synthesis; Linkage mechanism; Parallel system; Pantograph; Kinematics; Numerical method; Optimization; Minimax problem; Parallel mechanism
SD : Robótica; Teleacción; Interfase usuario; Sensibilidad tactil; Síntesis mecanismo; Mecanismo articulado; Sistema paralelo; Pantógrafo; Cinemática; Método numérico; Optimización; Problema minimax
LO : INIST-26423
ID : 01-0485532

Links to Exploration step

Pascal:01-0485532

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimal kinematic design of a haptic pen</title>
<author>
<name sortKey="Stocco, Leo J" sort="Stocco, Leo J" uniqKey="Stocco L" first="Leo J." last="Stocco">Leo J. Stocco</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Salcudean, Septimiu E" sort="Salcudean, Septimiu E" uniqKey="Salcudean S" first="Septimiu E." last="Salcudean">Septimiu E. Salcudean</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sassani, Farrokh" sort="Sassani, Farrokh" uniqKey="Sassani F" first="Farrokh" last="Sassani">Farrokh Sassani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0485532</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0485532 CRAN</idno>
<idno type="RBID">Pascal:01-0485532</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001344</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optimal kinematic design of a haptic pen</title>
<author>
<name sortKey="Stocco, Leo J" sort="Stocco, Leo J" uniqKey="Stocco L" first="Leo J." last="Stocco">Leo J. Stocco</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Salcudean, Septimiu E" sort="Salcudean, Septimiu E" uniqKey="Salcudean S" first="Septimiu E." last="Salcudean">Septimiu E. Salcudean</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sassani, Farrokh" sort="Sassani, Farrokh" uniqKey="Sassani F" first="Farrokh" last="Sassani">Farrokh Sassani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE/ASME transactions on mechatronics</title>
<title level="j" type="abbreviated">IEEE/ASME trans. mechatron.</title>
<idno type="ISSN">1083-4435</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE/ASME transactions on mechatronics</title>
<title level="j" type="abbreviated">IEEE/ASME trans. mechatron.</title>
<idno type="ISSN">1083-4435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Kinematics</term>
<term>Linkage mechanism</term>
<term>Mechanism synthesis</term>
<term>Minimax problem</term>
<term>Numerical method</term>
<term>Optimization</term>
<term>Pantograph</term>
<term>Parallel mechanism</term>
<term>Parallel system</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robotique</term>
<term>Téléopération</term>
<term>Interface utilisateur</term>
<term>Sensibilité tactile</term>
<term>Synthèse mécanisme</term>
<term>Mécanisme articulé</term>
<term>Système parallèle</term>
<term>Pantographe</term>
<term>Cinématique</term>
<term>Méthode numérique</term>
<term>Optimisation</term>
<term>Problème minimax</term>
<term>Mécanisme parallèle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper investigates the performance demands of a haptic interface and shows how this information can be used to design a suitable mechanism. A design procedure, previously developed by the authors, consisting of a global isotropy index and a discrete optimization algorithm, allows one to compare a range of geometric variables, actuator scale factors, and even different robot devices for optimum performance. The approach is used to compare the performance of three 6-DOF robots including two wellknown parallel platform robots and a novel hybrid robot called the Twin-Pantograph in terms of their semidextrous workspaces and static force capabilities. Since the Twin-Pantograph yields the best results, its design is refined to address practical constraints and it is implemented as a haptic pen. The performance of the resulting design was measured and is also presented.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1083-4435</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE/ASME trans. mechatron.</s0>
</fA03>
<fA05>
<s2>6</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimal kinematic design of a haptic pen</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STOCCO (Leo J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SALCUDEAN (Septimiu E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SASSANI (Farrokh)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>210-220</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26423</s2>
</fA43>
<fA44>
<s0>A300</s0>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0485532</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE/ASME transactions on mechatronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper investigates the performance demands of a haptic interface and shows how this information can be used to design a suitable mechanism. A design procedure, previously developed by the authors, consisting of a global isotropy index and a discrete optimization algorithm, allows one to compare a range of geometric variables, actuator scale factors, and even different robot devices for optimum performance. The approach is used to compare the performance of three 6-DOF robots including two wellknown parallel platform robots and a novel hybrid robot called the Twin-Pantograph in terms of their semidextrous workspaces and static force capabilities. Since the Twin-Pantograph yields the best results, its design is refined to address practical constraints and it is implemented as a haptic pen. The performance of the resulting design was measured and is also presented.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D12E06</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>User interface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse mécanisme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Mechanism synthesis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis mecanismo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mécanisme articulé</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Linkage mechanism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mecanismo articulado</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Système parallèle</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Parallel system</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sistema paralelo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Pantographe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Pantograph</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Pantógrafo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cinématique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Kinematics</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cinemática</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Problème minimax</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Minimax problem</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Problema minimax</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Mécanisme parallèle</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Parallel mechanism</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>344</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 01-0485532 CRAN</NO>
<ET>Optimal kinematic design of a haptic pen</ET>
<AU>STOCCO (Leo J.); SALCUDEAN (Septimiu E.); SASSANI (Farrokh)</AU>
<AF>Department of Electrical and Computer Engineering, University of British Columbia/Vancouver, BC V6T 1Z4/Canada (1 aut., 2 aut., 3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE/ASME transactions on mechatronics; ISSN 1083-4435; Etats-Unis; Da. 2001; Vol. 6; No. 3; Pp. 210-220; Bibl. 30 ref.</SO>
<LA>Anglais</LA>
<EA>This paper investigates the performance demands of a haptic interface and shows how this information can be used to design a suitable mechanism. A design procedure, previously developed by the authors, consisting of a global isotropy index and a discrete optimization algorithm, allows one to compare a range of geometric variables, actuator scale factors, and even different robot devices for optimum performance. The approach is used to compare the performance of three 6-DOF robots including two wellknown parallel platform robots and a novel hybrid robot called the Twin-Pantograph in terms of their semidextrous workspaces and static force capabilities. Since the Twin-Pantograph yields the best results, its design is refined to address practical constraints and it is implemented as a haptic pen. The performance of the resulting design was measured and is also presented.</EA>
<CC>001D12E06; 001D02B04; 001D02D11</CC>
<FD>Robotique; Téléopération; Interface utilisateur; Sensibilité tactile; Synthèse mécanisme; Mécanisme articulé; Système parallèle; Pantographe; Cinématique; Méthode numérique; Optimisation; Problème minimax; Mécanisme parallèle</FD>
<ED>Robotics; Remote operation; User interface; Tactile sensitivity; Mechanism synthesis; Linkage mechanism; Parallel system; Pantograph; Kinematics; Numerical method; Optimization; Minimax problem; Parallel mechanism</ED>
<SD>Robótica; Teleacción; Interfase usuario; Sensibilidad tactil; Síntesis mecanismo; Mecanismo articulado; Sistema paralelo; Pantógrafo; Cinemática; Método numérico; Optimización; Problema minimax</SD>
<LO>INIST-26423</LO>
<ID>01-0485532</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001344 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001344 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0485532
   |texte=   Optimal kinematic design of a haptic pen
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024