Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time-domain passivity control of haptic interfaces

Identifieur interne : 001247 ( PascalFrancis/Corpus ); précédent : 001246; suivant : 001248

Time-domain passivity control of haptic interfaces

Auteurs : Blake Hannaford ; Jee-Hwan Ryu

Source :

RBID : Pascal:02-0471296

Descripteurs français

English descriptors

Abstract

A patent-pending, energy-based method is presented for controlling a haptic interface system to ensure stable contact under a wide variety of operating conditions. System stability is analyzed in terms of the time-domain definition of passivity. We define a "Passivity Observer" (PO) which measures energy flow in and out of one or more subsystems in real-time software. Active behavior is indicated by a negative value of the PO at any time. We also define the "Passivity Controller" (PC), an adaptive dissipative element which, at each time sample, absorbs exactly the net energy output (if any) measured by the PO. The method is tested with simulation and implementation in the Excalibur haptic interface system. Totally stable operation was achieved under conditions such as stiffness >100 N/mm or time delays of 15 ms. The PO/PC method requires very little additional computation and does not require a dynamical model to be identified.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1042-296X
A03   1    @0 IEEE trans. robot. autom.
A05       @2 18
A06       @2 1
A08 01  1  ENG  @1 Time-domain passivity control of haptic interfaces
A11 01  1    @1 HANNAFORD (Blake)
A11 02  1    @1 RYU (Jee-Hwan)
A14 01      @1 Department of Electrical Engineering, University of Washington @2 Seattle, WA 98195-2500 @3 USA @Z 1 aut.
A14 02      @1 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology @2 Taejeon 305-701 @3 KOR @Z 2 aut.
A20       @1 1-10
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 21023
A44       @0 A300
A45       @0 20 ref.
A47 01  1    @0 02-0471296
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on robotics and automation
A66 01      @0 USA
C01 01    ENG  @0 A patent-pending, energy-based method is presented for controlling a haptic interface system to ensure stable contact under a wide variety of operating conditions. System stability is analyzed in terms of the time-domain definition of passivity. We define a "Passivity Observer" (PO) which measures energy flow in and out of one or more subsystems in real-time software. Active behavior is indicated by a negative value of the PO at any time. We also define the "Passivity Controller" (PC), an adaptive dissipative element which, at each time sample, absorbs exactly the net energy output (if any) measured by the PO. The method is tested with simulation and implementation in the Excalibur haptic interface system. Totally stable operation was achieved under conditions such as stiffness >100 N/mm or time delays of 15 ms. The PO/PC method requires very little additional computation and does not require a dynamical model to be identified.
C02 01  X    @0 001D02D07
C03 01  X  FRE  @0 Identification système @5 01
C03 01  X  ENG  @0 System identification @5 01
C03 01  X  SPA  @0 Identificación sistema @5 01
C03 02  X  FRE  @0 Observateur @5 02
C03 02  X  ENG  @0 Observer @5 02
C03 02  X  SPA  @0 Observador @5 02
C03 03  X  FRE  @0 Passivation @5 03
C03 03  X  ENG  @0 Passivation @5 03
C03 03  X  SPA  @0 Pasivación @5 03
C03 04  X  FRE  @0 Commande adaptative @5 04
C03 04  X  ENG  @0 Adaptive control @5 04
C03 04  X  SPA  @0 Control adaptativo @5 04
C03 05  X  FRE  @0 Temps réel @5 05
C03 05  X  ENG  @0 Real time @5 05
C03 05  X  SPA  @0 Tiempo real @5 05
C03 06  X  FRE  @0 Haptic Intelligence Scale for Adult Blind @2 NP @5 06
C03 06  X  ENG  @0 Haptic Intelligence Scale for Adult Blind @2 NP @5 06
C03 06  X  SPA  @0 Haptic Intelligence Scale for Adult Blind @2 NP @5 06
C03 07  X  FRE  @0 Passivité @5 07
C03 07  X  ENG  @0 Passivity @5 07
C03 07  X  SPA  @0 Pasividad @5 07
C03 08  X  FRE  @0 Flux énergétique @5 11
C03 08  X  ENG  @0 Energy flow @5 11
C03 08  X  SPA  @0 Flujo energético @5 11
C03 09  X  FRE  @0 Sensibilité tactile @5 12
C03 09  X  ENG  @0 Tactile sensitivity @5 12
C03 09  X  SPA  @0 Sensibilidad tactil @5 12
C03 10  X  FRE  @0 Interface utilisateur @5 13
C03 10  X  ENG  @0 User interface @5 13
C03 10  X  SPA  @0 Interfase usuario @5 13
C03 11  X  FRE  @0 Temps retard @5 14
C03 11  X  ENG  @0 Delay time @5 14
C03 11  X  SPA  @0 Tiempo retardo @5 14
C03 12  X  FRE  @0 Pilotage ordinateur @5 15
C03 12  X  ENG  @0 Computer control @5 15
C03 12  X  SPA  @0 Control por ordenador @5 15
C03 13  X  FRE  @0 Méthode domaine temps @5 21
C03 13  X  ENG  @0 Time domain method @5 21
C03 13  X  SPA  @0 Método dominio tiempo @5 21
C03 14  X  FRE  @0 Méthode énergétique @5 22
C03 14  X  ENG  @0 Energy method @5 22
C03 14  X  SPA  @0 Método energético @5 22
C03 15  X  FRE  @0 Modélisation @5 23
C03 15  X  ENG  @0 Modeling @5 23
C03 15  X  SPA  @0 Modelización @5 23
N21       @1 273
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 02-0471296 CRAN
ET : Time-domain passivity control of haptic interfaces
AU : HANNAFORD (Blake); RYU (Jee-Hwan)
AF : Department of Electrical Engineering, University of Washington/Seattle, WA 98195-2500/Etats-Unis (1 aut.); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology/Taejeon 305-701/Corée, République de (2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on robotics and automation; ISSN 1042-296X; Etats-Unis; Da. 2002; Vol. 18; No. 1; Pp. 1-10; Bibl. 20 ref.
LA : Anglais
EA : A patent-pending, energy-based method is presented for controlling a haptic interface system to ensure stable contact under a wide variety of operating conditions. System stability is analyzed in terms of the time-domain definition of passivity. We define a "Passivity Observer" (PO) which measures energy flow in and out of one or more subsystems in real-time software. Active behavior is indicated by a negative value of the PO at any time. We also define the "Passivity Controller" (PC), an adaptive dissipative element which, at each time sample, absorbs exactly the net energy output (if any) measured by the PO. The method is tested with simulation and implementation in the Excalibur haptic interface system. Totally stable operation was achieved under conditions such as stiffness >100 N/mm or time delays of 15 ms. The PO/PC method requires very little additional computation and does not require a dynamical model to be identified.
CC : 001D02D07
FD : Identification système; Observateur; Passivation; Commande adaptative; Temps réel; Haptic Intelligence Scale for Adult Blind; Passivité; Flux énergétique; Sensibilité tactile; Interface utilisateur; Temps retard; Pilotage ordinateur; Méthode domaine temps; Méthode énergétique; Modélisation
ED : System identification; Observer; Passivation; Adaptive control; Real time; Haptic Intelligence Scale for Adult Blind; Passivity; Energy flow; Tactile sensitivity; User interface; Delay time; Computer control; Time domain method; Energy method; Modeling
SD : Identificación sistema; Observador; Pasivación; Control adaptativo; Tiempo real; Haptic Intelligence Scale for Adult Blind; Pasividad; Flujo energético; Sensibilidad tactil; Interfase usuario; Tiempo retardo; Control por ordenador; Método dominio tiempo; Método energético; Modelización
LO : INIST-21023
ID : 02-0471296

Links to Exploration step

Pascal:02-0471296

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Time-domain passivity control of haptic interfaces</title>
<author>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195-2500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Jee Hwan" sort="Ryu, Jee Hwan" uniqKey="Ryu J" first="Jee-Hwan" last="Ryu">Jee-Hwan Ryu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Taejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0471296</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0471296 CRAN</idno>
<idno type="RBID">Pascal:02-0471296</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001247</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Time-domain passivity control of haptic interfaces</title>
<author>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195-2500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Jee Hwan" sort="Ryu, Jee Hwan" uniqKey="Ryu J" first="Jee-Hwan" last="Ryu">Jee-Hwan Ryu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Taejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on robotics and automation</title>
<title level="j" type="abbreviated">IEEE trans. robot. autom.</title>
<idno type="ISSN">1042-296X</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on robotics and automation</title>
<title level="j" type="abbreviated">IEEE trans. robot. autom.</title>
<idno type="ISSN">1042-296X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive control</term>
<term>Computer control</term>
<term>Delay time</term>
<term>Energy flow</term>
<term>Energy method</term>
<term>Haptic Intelligence Scale for Adult Blind</term>
<term>Modeling</term>
<term>Observer</term>
<term>Passivation</term>
<term>Passivity</term>
<term>Real time</term>
<term>System identification</term>
<term>Tactile sensitivity</term>
<term>Time domain method</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Identification système</term>
<term>Observateur</term>
<term>Passivation</term>
<term>Commande adaptative</term>
<term>Temps réel</term>
<term>Haptic Intelligence Scale for Adult Blind</term>
<term>Passivité</term>
<term>Flux énergétique</term>
<term>Sensibilité tactile</term>
<term>Interface utilisateur</term>
<term>Temps retard</term>
<term>Pilotage ordinateur</term>
<term>Méthode domaine temps</term>
<term>Méthode énergétique</term>
<term>Modélisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A patent-pending, energy-based method is presented for controlling a haptic interface system to ensure stable contact under a wide variety of operating conditions. System stability is analyzed in terms of the time-domain definition of passivity. We define a "Passivity Observer" (PO) which measures energy flow in and out of one or more subsystems in real-time software. Active behavior is indicated by a negative value of the PO at any time. We also define the "Passivity Controller" (PC), an adaptive dissipative element which, at each time sample, absorbs exactly the net energy output (if any) measured by the PO. The method is tested with simulation and implementation in the Excalibur haptic interface system. Totally stable operation was achieved under conditions such as stiffness >100 N/mm or time delays of 15 ms. The PO/PC method requires very little additional computation and does not require a dynamical model to be identified.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1042-296X</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. robot. autom.</s0>
</fA03>
<fA05>
<s2>18</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Time-domain passivity control of haptic interfaces</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HANNAFORD (Blake)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RYU (Jee-Hwan)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195-2500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Taejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1-10</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023</s2>
</fA43>
<fA44>
<s0>A300</s0>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0471296</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on robotics and automation</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A patent-pending, energy-based method is presented for controlling a haptic interface system to ensure stable contact under a wide variety of operating conditions. System stability is analyzed in terms of the time-domain definition of passivity. We define a "Passivity Observer" (PO) which measures energy flow in and out of one or more subsystems in real-time software. Active behavior is indicated by a negative value of the PO at any time. We also define the "Passivity Controller" (PC), an adaptive dissipative element which, at each time sample, absorbs exactly the net energy output (if any) measured by the PO. The method is tested with simulation and implementation in the Excalibur haptic interface system. Totally stable operation was achieved under conditions such as stiffness >100 N/mm or time delays of 15 ms. The PO/PC method requires very little additional computation and does not require a dynamical model to be identified.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Identification système</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>System identification</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Identificación sistema</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Observateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Observer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Observador</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Passivation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Passivation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pasivación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Commande adaptative</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Adaptive control</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Control adaptativo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Real time</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Haptic Intelligence Scale for Adult Blind</s0>
<s2>NP</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Haptic Intelligence Scale for Adult Blind</s0>
<s2>NP</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Haptic Intelligence Scale for Adult Blind</s0>
<s2>NP</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Passivité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Passivity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pasividad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Flux énergétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Energy flow</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Flujo energético</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>User interface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Temps retard</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Delay time</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Tiempo retardo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Pilotage ordinateur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Computer control</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Control por ordenador</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Méthode domaine temps</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Time domain method</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Método dominio tiempo</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode énergétique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Energy method</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método energético</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>23</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 02-0471296 CRAN</NO>
<ET>Time-domain passivity control of haptic interfaces</ET>
<AU>HANNAFORD (Blake); RYU (Jee-Hwan)</AU>
<AF>Department of Electrical Engineering, University of Washington/Seattle, WA 98195-2500/Etats-Unis (1 aut.); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology/Taejeon 305-701/Corée, République de (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on robotics and automation; ISSN 1042-296X; Etats-Unis; Da. 2002; Vol. 18; No. 1; Pp. 1-10; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>A patent-pending, energy-based method is presented for controlling a haptic interface system to ensure stable contact under a wide variety of operating conditions. System stability is analyzed in terms of the time-domain definition of passivity. We define a "Passivity Observer" (PO) which measures energy flow in and out of one or more subsystems in real-time software. Active behavior is indicated by a negative value of the PO at any time. We also define the "Passivity Controller" (PC), an adaptive dissipative element which, at each time sample, absorbs exactly the net energy output (if any) measured by the PO. The method is tested with simulation and implementation in the Excalibur haptic interface system. Totally stable operation was achieved under conditions such as stiffness >100 N/mm or time delays of 15 ms. The PO/PC method requires very little additional computation and does not require a dynamical model to be identified.</EA>
<CC>001D02D07</CC>
<FD>Identification système; Observateur; Passivation; Commande adaptative; Temps réel; Haptic Intelligence Scale for Adult Blind; Passivité; Flux énergétique; Sensibilité tactile; Interface utilisateur; Temps retard; Pilotage ordinateur; Méthode domaine temps; Méthode énergétique; Modélisation</FD>
<ED>System identification; Observer; Passivation; Adaptive control; Real time; Haptic Intelligence Scale for Adult Blind; Passivity; Energy flow; Tactile sensitivity; User interface; Delay time; Computer control; Time domain method; Energy method; Modeling</ED>
<SD>Identificación sistema; Observador; Pasivación; Control adaptativo; Tiempo real; Haptic Intelligence Scale for Adult Blind; Pasividad; Flujo energético; Sensibilidad tactil; Interfase usuario; Tiempo retardo; Control por ordenador; Método dominio tiempo; Método energético; Modelización</SD>
<LO>INIST-21023</LO>
<ID>02-0471296</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001247 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001247 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0471296
   |texte=   Time-domain passivity control of haptic interfaces
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024