Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Topology representing neural networks reconcile biomolecular shape, structure, and dynamics

Identifieur interne : 001117 ( PascalFrancis/Corpus ); précédent : 001116; suivant : 001118

Topology representing neural networks reconcile biomolecular shape, structure, and dynamics

Auteurs : W. Wriggers ; P. Chacon ; J. A. Kovacs ; F. Tama ; S. Birmanns

Source :

RBID : Pascal:04-0084062

Descripteurs français

English descriptors

Abstract

Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby facilitate the fitting of molecular fragments into large macromolecular complexes. The components of such complexes undergo a wide range of motions, and shapes observed at low resolution often deviate from the known atomic structures. What is required for the modeling of such motions is a combination of global shape constraints based on the low-resolution data with a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based deformable models retain much of the mechanical properties of biological macromolecules. The elastic models yield a decomposition of the predicted motion into vibrational normal modes and are amenable to interactive manipulation with haptic rendering software. © 2003 Elsevier B.V. All rights reserved.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0925-2312
A02 01      @0 NRCGEO
A03   1    @0 Neurocomputing
A05       @2 56
A06       @2 1-4
A08 01  1  ENG  @1 Topology representing neural networks reconcile biomolecular shape, structure, and dynamics
A11 01  1    @1 WRIGGERS (W.)
A11 02  1    @1 CHACON (P.)
A11 03  1    @1 KOVACS (J. A.)
A11 04  1    @1 TAMA (F.)
A11 05  1    @1 BIRMANNS (S.)
A14 01      @1 School of Health Information Sci. University of Texas - Houston @2 Houston, TX 77030 @3 USA @Z 1 aut.
A20       @1 365-379
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 XXXX
A44       @0 A100
A45       @0 47 Refs.
A47 01  1    @0 04-0084062
A60       @1 P
A61       @0 A
A64 01  1    @0 Neurocomputing
A66 01      @0 NLD
C01 01    ENG  @0 Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby facilitate the fitting of molecular fragments into large macromolecular complexes. The components of such complexes undergo a wide range of motions, and shapes observed at low resolution often deviate from the known atomic structures. What is required for the modeling of such motions is a combination of global shape constraints based on the low-resolution data with a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based deformable models retain much of the mechanical properties of biological macromolecules. The elastic models yield a decomposition of the predicted motion into vibrational normal modes and are amenable to interactive manipulation with haptic rendering software. © 2003 Elsevier B.V. All rights reserved.
C02 01  X    @0 002B01
C02 02  X    @0 001A02B
C02 03  3    @0 001B00C40
C02 04  X    @0 001C01
C03 01  1  ENG  @0 Topology-representing networks (TRN) @4 INC
C03 02  1  FRE  @0 Théorie
C03 02  1  ENG  @0 Theory
C03 03  1  FRE  @0 Topologie
C03 03  1  ENG  @0 Topology
C03 04  1  FRE  @0 Degré liberté
C03 04  1  ENG  @0 Degrees of freedom (mechanics)
C03 05  1  FRE  @0 Dynamique moléculaire
C03 05  1  ENG  @0 Molecular dynamics
C03 06  1  FRE  @0 Stéréochimie
C03 06  1  ENG  @0 Stereochemistry
C03 07  1  FRE  @0 Modèle mathématique
C03 07  1  ENG  @0 Mathematical models
C03 08  1  FRE  @0 Réseau neuronal @3 P
C03 08  1  ENG  @0 Neural networks @3 P
N21       @1 061

Format Inist (serveur)

NO : PASCAL 04-0084062 EI
ET : Topology representing neural networks reconcile biomolecular shape, structure, and dynamics
AU : WRIGGERS (W.); CHACON (P.); KOVACS (J. A.); TAMA (F.); BIRMANNS (S.)
AF : School of Health Information Sci. University of Texas - Houston/Houston, TX 77030/Etats-Unis (1 aut.)
DT : Publication en série; Niveau analytique
SO : Neurocomputing; ISSN 0925-2312; Coden NRCGEO; Pays-Bas; Da. 2004; Vol. 56; No. 1-4; Pp. 365-379; Bibl. 47 Refs.
LA : Anglais
EA : Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby facilitate the fitting of molecular fragments into large macromolecular complexes. The components of such complexes undergo a wide range of motions, and shapes observed at low resolution often deviate from the known atomic structures. What is required for the modeling of such motions is a combination of global shape constraints based on the low-resolution data with a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based deformable models retain much of the mechanical properties of biological macromolecules. The elastic models yield a decomposition of the predicted motion into vibrational normal modes and are amenable to interactive manipulation with haptic rendering software. © 2003 Elsevier B.V. All rights reserved.
CC : 002B01; 001A02B; 001B00C40; 001C01
FD : Théorie; Topologie; Degré liberté; Dynamique moléculaire; Stéréochimie; Modèle mathématique; Réseau neuronal
ED : Topology-representing networks (TRN); Theory; Topology; Degrees of freedom (mechanics); Molecular dynamics; Stereochemistry; Mathematical models; Neural networks
LO : INIST-XXXX
ID : 04-0084062

Links to Exploration step

Pascal:04-0084062

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Topology representing neural networks reconcile biomolecular shape, structure, and dynamics</title>
<author>
<name sortKey="Wriggers, W" sort="Wriggers, W" uniqKey="Wriggers W" first="W." last="Wriggers">W. Wriggers</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Health Information Sci. University of Texas - Houston</s1>
<s2>Houston, TX 77030</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chacon, P" sort="Chacon, P" uniqKey="Chacon P" first="P." last="Chacon">P. Chacon</name>
</author>
<author>
<name sortKey="Kovacs, J A" sort="Kovacs, J A" uniqKey="Kovacs J" first="J. A." last="Kovacs">J. A. Kovacs</name>
</author>
<author>
<name sortKey="Tama, F" sort="Tama, F" uniqKey="Tama F" first="F." last="Tama">F. Tama</name>
</author>
<author>
<name sortKey="Birmanns, S" sort="Birmanns, S" uniqKey="Birmanns S" first="S." last="Birmanns">S. Birmanns</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0084062</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0084062 EI</idno>
<idno type="RBID">Pascal:04-0084062</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001117</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Topology representing neural networks reconcile biomolecular shape, structure, and dynamics</title>
<author>
<name sortKey="Wriggers, W" sort="Wriggers, W" uniqKey="Wriggers W" first="W." last="Wriggers">W. Wriggers</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Health Information Sci. University of Texas - Houston</s1>
<s2>Houston, TX 77030</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chacon, P" sort="Chacon, P" uniqKey="Chacon P" first="P." last="Chacon">P. Chacon</name>
</author>
<author>
<name sortKey="Kovacs, J A" sort="Kovacs, J A" uniqKey="Kovacs J" first="J. A." last="Kovacs">J. A. Kovacs</name>
</author>
<author>
<name sortKey="Tama, F" sort="Tama, F" uniqKey="Tama F" first="F." last="Tama">F. Tama</name>
</author>
<author>
<name sortKey="Birmanns, S" sort="Birmanns, S" uniqKey="Birmanns S" first="S." last="Birmanns">S. Birmanns</name>
</author>
</analytic>
<series>
<title level="j" type="main">Neurocomputing</title>
<title level="j" type="abbreviated">Neurocomputing</title>
<idno type="ISSN">0925-2312</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neurocomputing</title>
<title level="j" type="abbreviated">Neurocomputing</title>
<idno type="ISSN">0925-2312</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Degrees of freedom (mechanics)</term>
<term>Mathematical models</term>
<term>Molecular dynamics</term>
<term>Neural networks</term>
<term>Stereochemistry</term>
<term>Theory</term>
<term>Topology</term>
<term>Topology-representing networks (TRN)</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Théorie</term>
<term>Topologie</term>
<term>Degré liberté</term>
<term>Dynamique moléculaire</term>
<term>Stéréochimie</term>
<term>Modèle mathématique</term>
<term>Réseau neuronal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby facilitate the fitting of molecular fragments into large macromolecular complexes. The components of such complexes undergo a wide range of motions, and shapes observed at low resolution often deviate from the known atomic structures. What is required for the modeling of such motions is a combination of global shape constraints based on the low-resolution data with a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based deformable models retain much of the mechanical properties of biological macromolecules. The elastic models yield a decomposition of the predicted motion into vibrational normal modes and are amenable to interactive manipulation with haptic rendering software. © 2003 Elsevier B.V. All rights reserved.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-2312</s0>
</fA01>
<fA02 i1="01">
<s0>NRCGEO</s0>
</fA02>
<fA03 i2="1">
<s0>Neurocomputing</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>1-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Topology representing neural networks reconcile biomolecular shape, structure, and dynamics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WRIGGERS (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHACON (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOVACS (J. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TAMA (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BIRMANNS (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Health Information Sci. University of Texas - Houston</s1>
<s2>Houston, TX 77030</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>365-379</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>XXXX</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>47 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0084062</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neurocomputing</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby facilitate the fitting of molecular fragments into large macromolecular complexes. The components of such complexes undergo a wide range of motions, and shapes observed at low resolution often deviate from the known atomic structures. What is required for the modeling of such motions is a combination of global shape constraints based on the low-resolution data with a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based deformable models retain much of the mechanical properties of biological macromolecules. The elastic models yield a decomposition of the predicted motion into vibrational normal modes and are amenable to interactive manipulation with haptic rendering software. © 2003 Elsevier B.V. All rights reserved.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00C40</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001C01</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Topology-representing networks (TRN)</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="FRE">
<s0>Théorie</s0>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Theory</s0>
</fC03>
<fC03 i1="03" i2="1" l="FRE">
<s0>Topologie</s0>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Topology</s0>
</fC03>
<fC03 i1="04" i2="1" l="FRE">
<s0>Degré liberté</s0>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>Degrees of freedom (mechanics)</s0>
</fC03>
<fC03 i1="05" i2="1" l="FRE">
<s0>Dynamique moléculaire</s0>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>Molecular dynamics</s0>
</fC03>
<fC03 i1="06" i2="1" l="FRE">
<s0>Stéréochimie</s0>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Stereochemistry</s0>
</fC03>
<fC03 i1="07" i2="1" l="FRE">
<s0>Modèle mathématique</s0>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Mathematical models</s0>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Réseau neuronal</s0>
<s3>P</s3>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Neural networks</s0>
<s3>P</s3>
</fC03>
<fN21>
<s1>061</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 04-0084062 EI</NO>
<ET>Topology representing neural networks reconcile biomolecular shape, structure, and dynamics</ET>
<AU>WRIGGERS (W.); CHACON (P.); KOVACS (J. A.); TAMA (F.); BIRMANNS (S.)</AU>
<AF>School of Health Information Sci. University of Texas - Houston/Houston, TX 77030/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Neurocomputing; ISSN 0925-2312; Coden NRCGEO; Pays-Bas; Da. 2004; Vol. 56; No. 1-4; Pp. 365-379; Bibl. 47 Refs.</SO>
<LA>Anglais</LA>
<EA>Topology-representing networks (TRNs) generate reduced models of biomolecules and thereby facilitate the fitting of molecular fragments into large macromolecular complexes. The components of such complexes undergo a wide range of motions, and shapes observed at low resolution often deviate from the known atomic structures. What is required for the modeling of such motions is a combination of global shape constraints based on the low-resolution data with a local modeling of atomic interactions. We present a novel Motion Capture Network that freezes inessential degrees of freedom to maintain the stereochemistry of an atomic model. TRN-based deformable models retain much of the mechanical properties of biological macromolecules. The elastic models yield a decomposition of the predicted motion into vibrational normal modes and are amenable to interactive manipulation with haptic rendering software. © 2003 Elsevier B.V. All rights reserved.</EA>
<CC>002B01; 001A02B; 001B00C40; 001C01</CC>
<FD>Théorie; Topologie; Degré liberté; Dynamique moléculaire; Stéréochimie; Modèle mathématique; Réseau neuronal</FD>
<ED>Topology-representing networks (TRN); Theory; Topology; Degrees of freedom (mechanics); Molecular dynamics; Stereochemistry; Mathematical models; Neural networks</ED>
<LO>INIST-XXXX</LO>
<ID>04-0084062</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0084062
   |texte=   Topology representing neural networks reconcile biomolecular shape,  structure, and dynamics
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024