Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Combining haptic and visual servoing for cardiothoracic surgery

Identifieur interne : 001031 ( PascalFrancis/Corpus ); précédent : 001030; suivant : 001032

Combining haptic and visual servoing for cardiothoracic surgery

Auteurs : Christopher W. Kennedy ; TIE HU ; Jaydey P. Desai

Source :

RBID : Pascal:04-0204745

Descripteurs français

English descriptors

Abstract

Cardiovascular disease is one of the leading causes of death in the United States and also a major disease worldwide with over 700,000 coronary artery bypass graft (CABG) procedures performed annually all around the world, of which 350,000 are performed in the United States. The use of mechanical stabilizers in the CABG procedures can cause irreversible local damage by traumatizing the underlying microcirculation. The primary goal of this research is to develop effective haptic and visual servoing methods, with the eventual goal of eliminating the need for mechanical stabilizers in a CABG procedure by presenting a stationary operative site to the surgeon performing the procedure using haptic and visual feedback. We present in this paper the results from our initial work in the area of tracking a deformable membrane using vision and providing haptic feedback to the user based on the vision information and the material properties of the membrane. In our first experiment, we track the deformation of a rubber membrane in real-time through stereo vision while providing haptic feedback to the user interacting with the reconstructed membrane through the PHANToM haptic device. In the second experiment, we verify the ability of our vision system to track a point on a surface undergoing a complex 3D motion.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1050-4729
A08 01  1  ENG  @1 Combining haptic and visual servoing for cardiothoracic surgery
A09 01  1  ENG  @1 Robotics and automation : Washington DC, 11-15 May 2002
A11 01  1    @1 KENNEDY (Christopher W.)
A11 02  1    @1 TIE HU
A11 03  1    @1 DESAI (Jaydey P.)
A14 01      @1 Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University @2 Philadelphia, PA 19104 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A18 01  1    @1 IEEE Robotics and Automatic Society @3 USA @9 patr.
A20       @1 2106-2111
A21       @1 2002
A23 01      @0 ENG
A26 01      @0 0-7803-7272-7
A43 01      @1 INIST @2 Y 37947 @5 354000117766643320
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 22 ref.
A47 01  1    @0 04-0204745
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings - IEEE International Conference on Robotics and Automation
A66 01      @0 USA
C01 01    ENG  @0 Cardiovascular disease is one of the leading causes of death in the United States and also a major disease worldwide with over 700,000 coronary artery bypass graft (CABG) procedures performed annually all around the world, of which 350,000 are performed in the United States. The use of mechanical stabilizers in the CABG procedures can cause irreversible local damage by traumatizing the underlying microcirculation. The primary goal of this research is to develop effective haptic and visual servoing methods, with the eventual goal of eliminating the need for mechanical stabilizers in a CABG procedure by presenting a stationary operative site to the surgeon performing the procedure using haptic and visual feedback. We present in this paper the results from our initial work in the area of tracking a deformable membrane using vision and providing haptic feedback to the user based on the vision information and the material properties of the membrane. In our first experiment, we track the deformation of a rubber membrane in real-time through stereo vision while providing haptic feedback to the user interacting with the reconstructed membrane through the PHANToM haptic device. In the second experiment, we verify the ability of our vision system to track a point on a surface undergoing a complex 3D motion.
C02 01  X    @0 001D02D11
C03 01  X  FRE  @0 Robotique @5 01
C03 01  X  ENG  @0 Robotics @5 01
C03 01  X  SPA  @0 Robótica @5 01
C03 02  X  FRE  @0 Asservissement visuel @5 09
C03 02  X  ENG  @0 Visual servoing @5 09
C03 02  X  SPA  @0 Servomando visual @5 09
C03 03  X  FRE  @0 Homme @5 10
C03 03  X  ENG  @0 Human @5 10
C03 03  X  SPA  @0 Hombre @5 10
C03 04  X  FRE  @0 Pistage @5 11
C03 04  X  ENG  @0 Tracking @5 11
C03 04  X  SPA  @0 Rastreo @5 11
C03 05  X  FRE  @0 Rétroaction @5 12
C03 05  X  ENG  @0 Feedback regulation @5 12
C03 05  X  SPA  @0 Retroacción @5 12
C03 06  X  FRE  @0 Temps réel @5 13
C03 06  X  ENG  @0 Real time @5 13
C03 06  X  SPA  @0 Tiempo real @5 13
C03 07  X  FRE  @0 Sensibilité tactile @5 18
C03 07  X  ENG  @0 Tactile sensitivity @5 18
C03 07  X  SPA  @0 Sensibilidad tactil @5 18
C03 08  X  FRE  @0 Chirurgie @5 19
C03 08  X  ENG  @0 Surgery @5 19
C03 08  X  SPA  @0 Cirugía @5 19
C03 09  X  FRE  @0 Endommagement @5 20
C03 09  X  ENG  @0 Damaging @5 20
C03 09  X  SPA  @0 Deterioración @5 20
C03 10  X  FRE  @0 Membrane @5 21
C03 10  X  ENG  @0 Membrane @5 21
C03 10  X  SPA  @0 Membrana @5 21
C03 11  X  FRE  @0 Caoutchouc @5 22
C03 11  X  ENG  @0 Rubber @5 22
C03 11  X  SPA  @0 Caucho @5 22
C03 12  3  FRE  @0 Traitement image stéréoscopique @5 23
C03 12  3  ENG  @0 Stereo image processing @5 23
C03 13  X  FRE  @0 Vision stéréoscopique @5 24
C03 13  X  ENG  @0 Stereopsis @5 24
C03 13  X  SPA  @0 Visión estereoscópica @5 24
C03 14  X  FRE  @0 Formation image tridimensionnelle @5 25
C03 14  X  ENG  @0 3D imaging @5 25
C03 14  X  SPA  @0 Formación imagen tridimensional @5 25
C03 15  X  FRE  @0 Dérivation @5 28
C03 15  X  ENG  @0 Bypass @5 28
C03 15  X  SPA  @0 Derivación @5 28
N21       @1 138
N82       @1 OTO
pR  
A30 01  1  ENG  @1 IEEE international conference on robotics and automation @3 Washington DC USA @4 2002-05-11

Format Inist (serveur)

NO : PASCAL 04-0204745 INIST
ET : Combining haptic and visual servoing for cardiothoracic surgery
AU : KENNEDY (Christopher W.); TIE HU; DESAI (Jaydey P.)
AF : Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University/Philadelphia, PA 19104/Etats-Unis (1 aut., 2 aut., 3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Proceedings - IEEE International Conference on Robotics and Automation; ISSN 1050-4729; Etats-Unis; Da. 2002; Pp. 2106-2111; Bibl. 22 ref.
LA : Anglais
EA : Cardiovascular disease is one of the leading causes of death in the United States and also a major disease worldwide with over 700,000 coronary artery bypass graft (CABG) procedures performed annually all around the world, of which 350,000 are performed in the United States. The use of mechanical stabilizers in the CABG procedures can cause irreversible local damage by traumatizing the underlying microcirculation. The primary goal of this research is to develop effective haptic and visual servoing methods, with the eventual goal of eliminating the need for mechanical stabilizers in a CABG procedure by presenting a stationary operative site to the surgeon performing the procedure using haptic and visual feedback. We present in this paper the results from our initial work in the area of tracking a deformable membrane using vision and providing haptic feedback to the user based on the vision information and the material properties of the membrane. In our first experiment, we track the deformation of a rubber membrane in real-time through stereo vision while providing haptic feedback to the user interacting with the reconstructed membrane through the PHANToM haptic device. In the second experiment, we verify the ability of our vision system to track a point on a surface undergoing a complex 3D motion.
CC : 001D02D11
FD : Robotique; Asservissement visuel; Homme; Pistage; Rétroaction; Temps réel; Sensibilité tactile; Chirurgie; Endommagement; Membrane; Caoutchouc; Traitement image stéréoscopique; Vision stéréoscopique; Formation image tridimensionnelle; Dérivation
ED : Robotics; Visual servoing; Human; Tracking; Feedback regulation; Real time; Tactile sensitivity; Surgery; Damaging; Membrane; Rubber; Stereo image processing; Stereopsis; 3D imaging; Bypass
SD : Robótica; Servomando visual; Hombre; Rastreo; Retroacción; Tiempo real; Sensibilidad tactil; Cirugía; Deterioración; Membrana; Caucho; Visión estereoscópica; Formación imagen tridimensional; Derivación
LO : INIST-Y 37947.354000117766643320
ID : 04-0204745

Links to Exploration step

Pascal:04-0204745

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Combining haptic and visual servoing for cardiothoracic surgery</title>
<author>
<name sortKey="Kennedy, Christopher W" sort="Kennedy, Christopher W" uniqKey="Kennedy C" first="Christopher W." last="Kennedy">Christopher W. Kennedy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tie Hu" sort="Tie Hu" uniqKey="Tie Hu" last="Tie Hu">TIE HU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Desai, Jaydey P" sort="Desai, Jaydey P" uniqKey="Desai J" first="Jaydey P." last="Desai">Jaydey P. Desai</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0204745</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 04-0204745 INIST</idno>
<idno type="RBID">Pascal:04-0204745</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Combining haptic and visual servoing for cardiothoracic surgery</title>
<author>
<name sortKey="Kennedy, Christopher W" sort="Kennedy, Christopher W" uniqKey="Kennedy C" first="Christopher W." last="Kennedy">Christopher W. Kennedy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tie Hu" sort="Tie Hu" uniqKey="Tie Hu" last="Tie Hu">TIE HU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Desai, Jaydey P" sort="Desai, Jaydey P" uniqKey="Desai J" first="Jaydey P." last="Desai">Jaydey P. Desai</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings - IEEE International Conference on Robotics and Automation</title>
<idno type="ISSN">1050-4729</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings - IEEE International Conference on Robotics and Automation</title>
<idno type="ISSN">1050-4729</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3D imaging</term>
<term>Bypass</term>
<term>Damaging</term>
<term>Feedback regulation</term>
<term>Human</term>
<term>Membrane</term>
<term>Real time</term>
<term>Robotics</term>
<term>Rubber</term>
<term>Stereo image processing</term>
<term>Stereopsis</term>
<term>Surgery</term>
<term>Tactile sensitivity</term>
<term>Tracking</term>
<term>Visual servoing</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robotique</term>
<term>Asservissement visuel</term>
<term>Homme</term>
<term>Pistage</term>
<term>Rétroaction</term>
<term>Temps réel</term>
<term>Sensibilité tactile</term>
<term>Chirurgie</term>
<term>Endommagement</term>
<term>Membrane</term>
<term>Caoutchouc</term>
<term>Traitement image stéréoscopique</term>
<term>Vision stéréoscopique</term>
<term>Formation image tridimensionnelle</term>
<term>Dérivation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cardiovascular disease is one of the leading causes of death in the United States and also a major disease worldwide with over 700,000 coronary artery bypass graft (CABG) procedures performed annually all around the world, of which 350,000 are performed in the United States. The use of mechanical stabilizers in the CABG procedures can cause irreversible local damage by traumatizing the underlying microcirculation. The primary goal of this research is to develop effective haptic and visual servoing methods, with the eventual goal of eliminating the need for mechanical stabilizers in a CABG procedure by presenting a stationary operative site to the surgeon performing the procedure using haptic and visual feedback. We present in this paper the results from our initial work in the area of tracking a deformable membrane using vision and providing haptic feedback to the user based on the vision information and the material properties of the membrane. In our first experiment, we track the deformation of a rubber membrane in real-time through stereo vision while providing haptic feedback to the user interacting with the reconstructed membrane through the PHANToM haptic device. In the second experiment, we verify the ability of our vision system to track a point on a surface undergoing a complex 3D motion.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1050-4729</s0>
</fA01>
<fA08 i1="01" i2="1" l="ENG">
<s1>Combining haptic and visual servoing for cardiothoracic surgery</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Robotics and automation : Washington DC, 11-15 May 2002</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KENNEDY (Christopher W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TIE HU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DESAI (Jaydey P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>IEEE Robotics and Automatic Society</s1>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>2106-2111</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>0-7803-7272-7</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>Y 37947</s2>
<s5>354000117766643320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0204745</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings - IEEE International Conference on Robotics and Automation</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cardiovascular disease is one of the leading causes of death in the United States and also a major disease worldwide with over 700,000 coronary artery bypass graft (CABG) procedures performed annually all around the world, of which 350,000 are performed in the United States. The use of mechanical stabilizers in the CABG procedures can cause irreversible local damage by traumatizing the underlying microcirculation. The primary goal of this research is to develop effective haptic and visual servoing methods, with the eventual goal of eliminating the need for mechanical stabilizers in a CABG procedure by presenting a stationary operative site to the surgeon performing the procedure using haptic and visual feedback. We present in this paper the results from our initial work in the area of tracking a deformable membrane using vision and providing haptic feedback to the user based on the vision information and the material properties of the membrane. In our first experiment, we track the deformation of a rubber membrane in real-time through stereo vision while providing haptic feedback to the user interacting with the reconstructed membrane through the PHANToM haptic device. In the second experiment, we verify the ability of our vision system to track a point on a surface undergoing a complex 3D motion.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Asservissement visuel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Visual servoing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Servomando visual</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Homme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Human</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Pistage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tracking</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rastreo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Real time</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Membrane</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Membrane</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Membrana</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Caoutchouc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Rubber</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Caucho</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Traitement image stéréoscopique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Stereo image processing</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Vision stéréoscopique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stereopsis</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Visión estereoscópica</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Formation image tridimensionnelle</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>3D imaging</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Formación imagen tridimensional</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Dérivation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Bypass</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Derivación</s0>
<s5>28</s5>
</fC03>
<fN21>
<s1>138</s1>
</fN21>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>IEEE international conference on robotics and automation</s1>
<s3>Washington DC USA</s3>
<s4>2002-05-11</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 04-0204745 INIST</NO>
<ET>Combining haptic and visual servoing for cardiothoracic surgery</ET>
<AU>KENNEDY (Christopher W.); TIE HU; DESAI (Jaydey P.)</AU>
<AF>Program for Robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory, 3141 Chestnut Street, MEM Department, Room 2-115 Drexel University/Philadelphia, PA 19104/Etats-Unis (1 aut., 2 aut., 3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Proceedings - IEEE International Conference on Robotics and Automation; ISSN 1050-4729; Etats-Unis; Da. 2002; Pp. 2106-2111; Bibl. 22 ref.</SO>
<LA>Anglais</LA>
<EA>Cardiovascular disease is one of the leading causes of death in the United States and also a major disease worldwide with over 700,000 coronary artery bypass graft (CABG) procedures performed annually all around the world, of which 350,000 are performed in the United States. The use of mechanical stabilizers in the CABG procedures can cause irreversible local damage by traumatizing the underlying microcirculation. The primary goal of this research is to develop effective haptic and visual servoing methods, with the eventual goal of eliminating the need for mechanical stabilizers in a CABG procedure by presenting a stationary operative site to the surgeon performing the procedure using haptic and visual feedback. We present in this paper the results from our initial work in the area of tracking a deformable membrane using vision and providing haptic feedback to the user based on the vision information and the material properties of the membrane. In our first experiment, we track the deformation of a rubber membrane in real-time through stereo vision while providing haptic feedback to the user interacting with the reconstructed membrane through the PHANToM haptic device. In the second experiment, we verify the ability of our vision system to track a point on a surface undergoing a complex 3D motion.</EA>
<CC>001D02D11</CC>
<FD>Robotique; Asservissement visuel; Homme; Pistage; Rétroaction; Temps réel; Sensibilité tactile; Chirurgie; Endommagement; Membrane; Caoutchouc; Traitement image stéréoscopique; Vision stéréoscopique; Formation image tridimensionnelle; Dérivation</FD>
<ED>Robotics; Visual servoing; Human; Tracking; Feedback regulation; Real time; Tactile sensitivity; Surgery; Damaging; Membrane; Rubber; Stereo image processing; Stereopsis; 3D imaging; Bypass</ED>
<SD>Robótica; Servomando visual; Hombre; Rastreo; Retroacción; Tiempo real; Sensibilidad tactil; Cirugía; Deterioración; Membrana; Caucho; Visión estereoscópica; Formación imagen tridimensional; Derivación</SD>
<LO>INIST-Y 37947.354000117766643320</LO>
<ID>04-0204745</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0204745
   |texte=   Combining haptic and visual servoing for cardiothoracic surgery
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024