Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of position quantization and sampling rate on virtual-wall passivity

Identifieur interne : 000E24 ( PascalFrancis/Corpus ); précédent : 000E23; suivant : 000E25

Effects of position quantization and sampling rate on virtual-wall passivity

Auteurs : Jake J. Abbott ; Allison M. Okamura

Source :

RBID : Pascal:06-0035331

Descripteurs français

English descriptors

Abstract

The "virtual wall" is the most common building block used in constructing haptic virtual environments. A virtual wall is typically based on a simple spring model, with unilateral constraints that allow the user to make and break contact with a surface. There are a number of factors (sample-and-hold, device dynamics, sensor quantization, etc.) that cause virtual walls to demonstrate active (nonpassive) behavior, destroying the illusion of reality. In this paper, we find an explicit upper bound on virtual wall stiffness that is a necessary and sufficient condition for virtual wall passivity. We consider a haptic display that can be modeled as a mass with Coulomb-plus-viscous friction, being acted upon by two external forces: an actuator and a human user. The system is equipped with only one sensor, an optical encoder measuring the position of the mass. We explicitly model the effects of position resolution, which has not been done in previous work. We make no assumptions about the human user, and we consider arbitrary constant sampling rates. The main result of our analysis is a necessary and sufficient condition for passivity that relies on the Coulomb friction in the haptic device, as well as the encoder resolution. We experimentally verify our results with a one-degree-of-freedom haptic display, and find that the system can display nonpassive behavior in two decoupled modes that are predicted by the necessary and sufficient condition. One mode represents instability, while the other mode results in active tactile sensations.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  2    @0 1552-3098
A05       @2 21
A06       @2 5
A08 01  1  ENG  @1 Effects of position quantization and sampling rate on virtual-wall passivity
A11 01  1    @1 ABBOTT (Jake J.)
A11 02  1    @1 OKAMURA (Allison M.)
A14 01      @1 Department of Mechanical Engineering, The Johns Hopkins University @2 Baltimore, MD 21218 @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 952-964
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 21023A @5 354000132716150150
A44       @0 A300
A45       @0 29 ref.
A47 01  1    @0 06-0035331
A60       @1 P
A61       @0 A
A64 01  2    @0 IEEE transactions on robotics
A66 01      @0 USA
C01 01    ENG  @0 The "virtual wall" is the most common building block used in constructing haptic virtual environments. A virtual wall is typically based on a simple spring model, with unilateral constraints that allow the user to make and break contact with a surface. There are a number of factors (sample-and-hold, device dynamics, sensor quantization, etc.) that cause virtual walls to demonstrate active (nonpassive) behavior, destroying the illusion of reality. In this paper, we find an explicit upper bound on virtual wall stiffness that is a necessary and sufficient condition for virtual wall passivity. We consider a haptic display that can be modeled as a mass with Coulomb-plus-viscous friction, being acted upon by two external forces: an actuator and a human user. The system is equipped with only one sensor, an optical encoder measuring the position of the mass. We explicitly model the effects of position resolution, which has not been done in previous work. We make no assumptions about the human user, and we consider arbitrary constant sampling rates. The main result of our analysis is a necessary and sufficient condition for passivity that relies on the Coulomb friction in the haptic device, as well as the encoder resolution. We experimentally verify our results with a one-degree-of-freedom haptic display, and find that the system can display nonpassive behavior in two decoupled modes that are predicted by the necessary and sufficient condition. One mode represents instability, while the other mode results in active tactile sensations.
C02 01  X    @0 001D02D01
C03 01  X  FRE  @0 Passivité @5 01
C03 01  X  ENG  @0 Passivity @5 01
C03 01  X  SPA  @0 Pasividad @5 01
C03 02  X  FRE  @0 Commande force @5 02
C03 02  X  ENG  @0 Force control @5 02
C03 02  X  SPA  @0 Control fuerza @5 02
C03 03  X  FRE  @0 Homme @5 03
C03 03  X  ENG  @0 Human @5 03
C03 03  X  SPA  @0 Hombre @5 03
C03 04  X  FRE  @0 Sensibilité tactile @5 11
C03 04  X  ENG  @0 Tactile sensitivity @5 11
C03 04  X  SPA  @0 Sensibilidad tactil @5 11
C03 05  X  FRE  @0 Réalité virtuelle @5 12
C03 05  X  ENG  @0 Virtual reality @5 12
C03 05  X  SPA  @0 Realidad virtual @5 12
C03 06  X  FRE  @0 Unilatéral @5 13
C03 06  X  ENG  @0 Unilateral @5 13
C03 06  X  SPA  @0 Unilateral @5 13
C03 07  X  FRE  @0 Capteur mesure @5 14
C03 07  X  ENG  @0 Measurement sensor @5 14
C03 07  X  SPA  @0 Captador medida @5 14
C03 08  X  FRE  @0 Interface utilisateur @5 15
C03 08  X  ENG  @0 User interface @5 15
C03 08  X  SPA  @0 Interfase usuario @5 15
C03 09  X  FRE  @0 Frottement sec @5 16
C03 09  X  ENG  @0 Dry friction @5 16
C03 09  X  SPA  @0 Frotamiento seco @5 16
C03 10  X  FRE  @0 Frottement visqueux @5 17
C03 10  X  ENG  @0 Viscous friction @5 17
C03 10  X  SPA  @0 Frotamiento viscoso @5 17
C03 11  X  FRE  @0 Capteur optique @5 18
C03 11  X  ENG  @0 Optical sensor @5 18
C03 11  X  SPA  @0 Captador óptico @5 18
C03 12  X  FRE  @0 Mesure optique @5 19
C03 12  X  ENG  @0 Optical measurement @5 19
C03 12  X  SPA  @0 Medida óptica @5 19
C03 13  X  FRE  @0 Mesure position @5 20
C03 13  X  ENG  @0 Position measurement @5 20
C03 13  X  SPA  @0 Medición posición @5 20
C03 14  X  FRE  @0 Quantification @5 21
C03 14  X  ENG  @0 Quantization @5 21
C03 14  X  SPA  @0 Cuantificación @5 21
C03 15  X  FRE  @0 Taux échantillonnage @5 22
C03 15  X  ENG  @0 Sampling rate @5 22
C03 15  X  SPA  @0 Razón muestreo @5 22
C03 16  X  FRE  @0 Modélisation @5 23
C03 16  X  ENG  @0 Modeling @5 23
C03 16  X  SPA  @0 Modelización @5 23
C03 17  X  FRE  @0 Borne supérieure @5 24
C03 17  X  ENG  @0 Upper bound @5 24
C03 17  X  SPA  @0 Cota superior @5 24
C03 18  X  FRE  @0 Instabilité @5 31
C03 18  X  ENG  @0 Instability @5 31
C03 18  X  SPA  @0 Inestabilidad @5 31
N21       @1 009
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 06-0035331 CRAN
ET : Effects of position quantization and sampling rate on virtual-wall passivity
AU : ABBOTT (Jake J.); OKAMURA (Allison M.)
AF : Department of Mechanical Engineering, The Johns Hopkins University/Baltimore, MD 21218/Etats-Unis (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on robotics; ISSN 1552-3098; Etats-Unis; Da. 2005; Vol. 21; No. 5; Pp. 952-964; Bibl. 29 ref.
LA : Anglais
EA : The "virtual wall" is the most common building block used in constructing haptic virtual environments. A virtual wall is typically based on a simple spring model, with unilateral constraints that allow the user to make and break contact with a surface. There are a number of factors (sample-and-hold, device dynamics, sensor quantization, etc.) that cause virtual walls to demonstrate active (nonpassive) behavior, destroying the illusion of reality. In this paper, we find an explicit upper bound on virtual wall stiffness that is a necessary and sufficient condition for virtual wall passivity. We consider a haptic display that can be modeled as a mass with Coulomb-plus-viscous friction, being acted upon by two external forces: an actuator and a human user. The system is equipped with only one sensor, an optical encoder measuring the position of the mass. We explicitly model the effects of position resolution, which has not been done in previous work. We make no assumptions about the human user, and we consider arbitrary constant sampling rates. The main result of our analysis is a necessary and sufficient condition for passivity that relies on the Coulomb friction in the haptic device, as well as the encoder resolution. We experimentally verify our results with a one-degree-of-freedom haptic display, and find that the system can display nonpassive behavior in two decoupled modes that are predicted by the necessary and sufficient condition. One mode represents instability, while the other mode results in active tactile sensations.
CC : 001D02D01
FD : Passivité; Commande force; Homme; Sensibilité tactile; Réalité virtuelle; Unilatéral; Capteur mesure; Interface utilisateur; Frottement sec; Frottement visqueux; Capteur optique; Mesure optique; Mesure position; Quantification; Taux échantillonnage; Modélisation; Borne supérieure; Instabilité
ED : Passivity; Force control; Human; Tactile sensitivity; Virtual reality; Unilateral; Measurement sensor; User interface; Dry friction; Viscous friction; Optical sensor; Optical measurement; Position measurement; Quantization; Sampling rate; Modeling; Upper bound; Instability
SD : Pasividad; Control fuerza; Hombre; Sensibilidad tactil; Realidad virtual; Unilateral; Captador medida; Interfase usuario; Frotamiento seco; Frotamiento viscoso; Captador óptico; Medida óptica; Medición posición; Cuantificación; Razón muestreo; Modelización; Cota superior; Inestabilidad
LO : INIST-21023A.354000132716150150
ID : 06-0035331

Links to Exploration step

Pascal:06-0035331

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of position quantization and sampling rate on virtual-wall passivity</title>
<author>
<name sortKey="Abbott, Jake J" sort="Abbott, Jake J" uniqKey="Abbott J" first="Jake J." last="Abbott">Jake J. Abbott</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, The Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M." last="Okamura">Allison M. Okamura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, The Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0035331</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0035331 CRAN</idno>
<idno type="RBID">Pascal:06-0035331</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effects of position quantization and sampling rate on virtual-wall passivity</title>
<author>
<name sortKey="Abbott, Jake J" sort="Abbott, Jake J" uniqKey="Abbott J" first="Jake J." last="Abbott">Jake J. Abbott</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, The Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M." last="Okamura">Allison M. Okamura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, The Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on robotics</title>
<idno type="ISSN">1552-3098</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on robotics</title>
<idno type="ISSN">1552-3098</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dry friction</term>
<term>Force control</term>
<term>Human</term>
<term>Instability</term>
<term>Measurement sensor</term>
<term>Modeling</term>
<term>Optical measurement</term>
<term>Optical sensor</term>
<term>Passivity</term>
<term>Position measurement</term>
<term>Quantization</term>
<term>Sampling rate</term>
<term>Tactile sensitivity</term>
<term>Unilateral</term>
<term>Upper bound</term>
<term>User interface</term>
<term>Virtual reality</term>
<term>Viscous friction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Passivité</term>
<term>Commande force</term>
<term>Homme</term>
<term>Sensibilité tactile</term>
<term>Réalité virtuelle</term>
<term>Unilatéral</term>
<term>Capteur mesure</term>
<term>Interface utilisateur</term>
<term>Frottement sec</term>
<term>Frottement visqueux</term>
<term>Capteur optique</term>
<term>Mesure optique</term>
<term>Mesure position</term>
<term>Quantification</term>
<term>Taux échantillonnage</term>
<term>Modélisation</term>
<term>Borne supérieure</term>
<term>Instabilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The "virtual wall" is the most common building block used in constructing haptic virtual environments. A virtual wall is typically based on a simple spring model, with unilateral constraints that allow the user to make and break contact with a surface. There are a number of factors (sample-and-hold, device dynamics, sensor quantization, etc.) that cause virtual walls to demonstrate active (nonpassive) behavior, destroying the illusion of reality. In this paper, we find an explicit upper bound on virtual wall stiffness that is a necessary and sufficient condition for virtual wall passivity. We consider a haptic display that can be modeled as a mass with Coulomb-plus-viscous friction, being acted upon by two external forces: an actuator and a human user. The system is equipped with only one sensor, an optical encoder measuring the position of the mass. We explicitly model the effects of position resolution, which has not been done in previous work. We make no assumptions about the human user, and we consider arbitrary constant sampling rates. The main result of our analysis is a necessary and sufficient condition for passivity that relies on the Coulomb friction in the haptic device, as well as the encoder resolution. We experimentally verify our results with a one-degree-of-freedom haptic display, and find that the system can display nonpassive behavior in two decoupled modes that are predicted by the necessary and sufficient condition. One mode represents instability, while the other mode results in active tactile sensations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>1552-3098</s0>
</fA01>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of position quantization and sampling rate on virtual-wall passivity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ABBOTT (Jake J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OKAMURA (Allison M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, The Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>952-964</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023A</s2>
<s5>354000132716150150</s5>
</fA43>
<fA44>
<s0>A300</s0>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0035331</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>IEEE transactions on robotics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The "virtual wall" is the most common building block used in constructing haptic virtual environments. A virtual wall is typically based on a simple spring model, with unilateral constraints that allow the user to make and break contact with a surface. There are a number of factors (sample-and-hold, device dynamics, sensor quantization, etc.) that cause virtual walls to demonstrate active (nonpassive) behavior, destroying the illusion of reality. In this paper, we find an explicit upper bound on virtual wall stiffness that is a necessary and sufficient condition for virtual wall passivity. We consider a haptic display that can be modeled as a mass with Coulomb-plus-viscous friction, being acted upon by two external forces: an actuator and a human user. The system is equipped with only one sensor, an optical encoder measuring the position of the mass. We explicitly model the effects of position resolution, which has not been done in previous work. We make no assumptions about the human user, and we consider arbitrary constant sampling rates. The main result of our analysis is a necessary and sufficient condition for passivity that relies on the Coulomb friction in the haptic device, as well as the encoder resolution. We experimentally verify our results with a one-degree-of-freedom haptic display, and find that the system can display nonpassive behavior in two decoupled modes that are predicted by the necessary and sufficient condition. One mode represents instability, while the other mode results in active tactile sensations.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Passivité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Passivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Pasividad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Force control</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Homme</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Human</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Unilatéral</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Unilateral</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Unilateral</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>User interface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Frottement sec</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Dry friction</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Frotamiento seco</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Frottement visqueux</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Viscous friction</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Frotamiento viscoso</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Capteur optique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical sensor</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Captador óptico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mesure optique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Optical measurement</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Medida óptica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Mesure position</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Position measurement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Medición posición</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Quantification</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Quantization</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cuantificación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Taux échantillonnage</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Sampling rate</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Razón muestreo</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Borne supérieure</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Upper bound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Cota superior</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Instabilité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Instability</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Inestabilidad</s0>
<s5>31</s5>
</fC03>
<fN21>
<s1>009</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0035331 CRAN</NO>
<ET>Effects of position quantization and sampling rate on virtual-wall passivity</ET>
<AU>ABBOTT (Jake J.); OKAMURA (Allison M.)</AU>
<AF>Department of Mechanical Engineering, The Johns Hopkins University/Baltimore, MD 21218/Etats-Unis (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on robotics; ISSN 1552-3098; Etats-Unis; Da. 2005; Vol. 21; No. 5; Pp. 952-964; Bibl. 29 ref.</SO>
<LA>Anglais</LA>
<EA>The "virtual wall" is the most common building block used in constructing haptic virtual environments. A virtual wall is typically based on a simple spring model, with unilateral constraints that allow the user to make and break contact with a surface. There are a number of factors (sample-and-hold, device dynamics, sensor quantization, etc.) that cause virtual walls to demonstrate active (nonpassive) behavior, destroying the illusion of reality. In this paper, we find an explicit upper bound on virtual wall stiffness that is a necessary and sufficient condition for virtual wall passivity. We consider a haptic display that can be modeled as a mass with Coulomb-plus-viscous friction, being acted upon by two external forces: an actuator and a human user. The system is equipped with only one sensor, an optical encoder measuring the position of the mass. We explicitly model the effects of position resolution, which has not been done in previous work. We make no assumptions about the human user, and we consider arbitrary constant sampling rates. The main result of our analysis is a necessary and sufficient condition for passivity that relies on the Coulomb friction in the haptic device, as well as the encoder resolution. We experimentally verify our results with a one-degree-of-freedom haptic display, and find that the system can display nonpassive behavior in two decoupled modes that are predicted by the necessary and sufficient condition. One mode represents instability, while the other mode results in active tactile sensations.</EA>
<CC>001D02D01</CC>
<FD>Passivité; Commande force; Homme; Sensibilité tactile; Réalité virtuelle; Unilatéral; Capteur mesure; Interface utilisateur; Frottement sec; Frottement visqueux; Capteur optique; Mesure optique; Mesure position; Quantification; Taux échantillonnage; Modélisation; Borne supérieure; Instabilité</FD>
<ED>Passivity; Force control; Human; Tactile sensitivity; Virtual reality; Unilateral; Measurement sensor; User interface; Dry friction; Viscous friction; Optical sensor; Optical measurement; Position measurement; Quantization; Sampling rate; Modeling; Upper bound; Instability</ED>
<SD>Pasividad; Control fuerza; Hombre; Sensibilidad tactil; Realidad virtual; Unilateral; Captador medida; Interfase usuario; Frotamiento seco; Frotamiento viscoso; Captador óptico; Medida óptica; Medición posición; Cuantificación; Razón muestreo; Modelización; Cota superior; Inestabilidad</SD>
<LO>INIST-21023A.354000132716150150</LO>
<ID>06-0035331</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000E24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0035331
   |texte=   Effects of position quantization and sampling rate on virtual-wall passivity
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024