Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

IPMC actuator array as 3-d haptic display

Identifieur interne : 000D89 ( PascalFrancis/Corpus ); précédent : 000D88; suivant : 000D90

IPMC actuator array as 3-d haptic display

Auteurs : Masanori Nakano ; Andrea Mazzone ; Filippo Piffaretti ; Roger Gassert ; Masayuki Nakao ; Hannes Bleuler

Source :

RBID : Pascal:06-0127301

Descripteurs français

English descriptors

Abstract

Based on the concept of Mazzone et al. [1], we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1017-2653
A05       @2 5759
A08 01  1  ENG  @1 IPMC actuator array as 3-d haptic display
A09 01  1  ENG  @1 Electroactive polymer actuators and devices (EAPAD) : San Diego CA, 7-10 March 2005
A11 01  1    @1 NAKANO (Masanori)
A11 02  1    @1 MAZZONE (Andrea)
A11 03  1    @1 PIFFARETTI (Filippo)
A11 04  1    @1 GASSERT (Roger)
A11 05  1    @1 NAKAO (Masayuki)
A11 06  1    @1 BLEULER (Hannes)
A12 01  1    @1 BAR-COHEN (Yoseph) @9 ed.
A14 01      @1 The University of Tokyo @3 JPN @Z 1 aut. @Z 5 aut.
A14 02      @1 ETH @2 Zurich @3 CHE @Z 2 aut.
A14 03      @1 EPFL @2 Lausanne @3 CHE @Z 3 aut. @Z 4 aut. @Z 6 aut.
A18 01  1    @1 International Society for Optical Engineering @2 Bellingham WA @3 USA @9 org-cong.
A20       @1 331-339
A21       @1 2005
A23 01      @0 ENG
A26 01      @0 0-8194-5740-X
A43 01      @1 INIST @2 21760 @5 354000124410520370
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 12 ref.
A47 01  1    @0 06-0127301
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 SPIE proceedings series
A66 01      @0 USA
C01 01    ENG  @0 Based on the concept of Mazzone et al. [1], we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.
C02 01  X    @0 001D10A08
C03 01  X  FRE  @0 Actionneur @5 01
C03 01  X  ENG  @0 Actuator @5 01
C03 01  X  SPA  @0 Accionador @5 01
C03 02  X  FRE  @0 Métal @2 NC @5 02
C03 02  X  ENG  @0 Metal @2 NC @5 02
C03 02  X  SPA  @0 Metal @2 NC @5 02
C03 03  X  FRE  @0 Polymère @5 03
C03 03  X  ENG  @0 Polymer @5 03
C03 03  X  SPA  @0 Polímero @5 03
C03 04  X  FRE  @0 Matériau composite @5 04
C03 04  X  ENG  @0 Composite material @5 04
C03 04  X  SPA  @0 Material compuesto @5 04
C03 05  X  FRE  @0 Méthode élément fini @5 05
C03 05  X  ENG  @0 Finite element method @5 05
C03 05  X  SPA  @0 Método elemento finito @5 05
C03 06  X  FRE  @0 Membrane @5 06
C03 06  X  ENG  @0 Membrane @5 06
C03 06  X  SPA  @0 Membrana @5 06
C03 07  X  FRE  @0 Usinage laser @5 07
C03 07  X  ENG  @0 Laser beam machining @5 07
C03 07  X  SPA  @0 Mecanizado láser @5 07
C03 08  X  FRE  @0 Formation motif @5 08
C03 08  X  ENG  @0 Patterning @5 08
C03 08  X  SPA  @0 Formacíon motivo @5 08
C03 09  X  FRE  @0 Etude comparative @5 09
C03 09  X  ENG  @0 Comparative study @5 09
C03 09  X  SPA  @0 Estudio comparativo @5 09
C03 10  X  FRE  @0 Modèle 3 dimensions @5 10
C03 10  X  ENG  @0 Three dimensional model @5 10
C03 10  X  SPA  @0 Modelo 3 dimensiones @5 10
C03 11  X  FRE  @0 Reconnaissance forme @5 11
C03 11  X  ENG  @0 Pattern recognition @5 11
C03 11  X  SPA  @0 Reconocimiento patrón @5 11
C03 12  3  FRE  @0 Reconnaissance objet @5 12
C03 12  3  ENG  @0 Object recognition @5 12
C03 13  X  FRE  @0 Etude expérimentale @5 13
C03 13  X  ENG  @0 Experimental study @5 13
C03 13  X  SPA  @0 Estudio experimental @5 13
C03 14  X  FRE  @0 Modélisation @5 31
C03 14  X  ENG  @0 Modeling @5 31
C03 14  X  SPA  @0 Modelización @5 31
N21       @1 079
pR  
A30 01  1  ENG  @1 Electroactive polymer actuators and devices. Conference @3 San Diego CA USA @4 2005-03-07

Format Inist (serveur)

NO : PASCAL 06-0127301 INIST
ET : IPMC actuator array as 3-d haptic display
AU : NAKANO (Masanori); MAZZONE (Andrea); PIFFARETTI (Filippo); GASSERT (Roger); NAKAO (Masayuki); BLEULER (Hannes); BAR-COHEN (Yoseph)
AF : The University of Tokyo/Japon (1 aut., 5 aut.); ETH/Zurich/Suisse (2 aut.); EPFL/Lausanne/Suisse (3 aut., 4 aut., 6 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : SPIE proceedings series; ISSN 1017-2653; Etats-Unis; Da. 2005; Vol. 5759; Pp. 331-339; Bibl. 12 ref.
LA : Anglais
EA : Based on the concept of Mazzone et al. [1], we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.
CC : 001D10A08
FD : Actionneur; Métal; Polymère; Matériau composite; Méthode élément fini; Membrane; Usinage laser; Formation motif; Etude comparative; Modèle 3 dimensions; Reconnaissance forme; Reconnaissance objet; Etude expérimentale; Modélisation
ED : Actuator; Metal; Polymer; Composite material; Finite element method; Membrane; Laser beam machining; Patterning; Comparative study; Three dimensional model; Pattern recognition; Object recognition; Experimental study; Modeling
SD : Accionador; Metal; Polímero; Material compuesto; Método elemento finito; Membrana; Mecanizado láser; Formacíon motivo; Estudio comparativo; Modelo 3 dimensiones; Reconocimiento patrón; Estudio experimental; Modelización
LO : INIST-21760.354000124410520370
ID : 06-0127301

Links to Exploration step

Pascal:06-0127301

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">IPMC actuator array as 3-d haptic display</title>
<author>
<name sortKey="Nakano, Masanori" sort="Nakano, Masanori" uniqKey="Nakano M" first="Masanori" last="Nakano">Masanori Nakano</name>
<affiliation>
<inist:fA14 i1="01">
<s1>The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mazzone, Andrea" sort="Mazzone, Andrea" uniqKey="Mazzone A" first="Andrea" last="Mazzone">Andrea Mazzone</name>
<affiliation>
<inist:fA14 i1="02">
<s1>ETH</s1>
<s2>Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Piffaretti, Filippo" sort="Piffaretti, Filippo" uniqKey="Piffaretti F" first="Filippo" last="Piffaretti">Filippo Piffaretti</name>
<affiliation>
<inist:fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gassert, Roger" sort="Gassert, Roger" uniqKey="Gassert R" first="Roger" last="Gassert">Roger Gassert</name>
<affiliation>
<inist:fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nakao, Masayuki" sort="Nakao, Masayuki" uniqKey="Nakao M" first="Masayuki" last="Nakao">Masayuki Nakao</name>
<affiliation>
<inist:fA14 i1="01">
<s1>The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bleuler, Hannes" sort="Bleuler, Hannes" uniqKey="Bleuler H" first="Hannes" last="Bleuler">Hannes Bleuler</name>
<affiliation>
<inist:fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0127301</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0127301 INIST</idno>
<idno type="RBID">Pascal:06-0127301</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">IPMC actuator array as 3-d haptic display</title>
<author>
<name sortKey="Nakano, Masanori" sort="Nakano, Masanori" uniqKey="Nakano M" first="Masanori" last="Nakano">Masanori Nakano</name>
<affiliation>
<inist:fA14 i1="01">
<s1>The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mazzone, Andrea" sort="Mazzone, Andrea" uniqKey="Mazzone A" first="Andrea" last="Mazzone">Andrea Mazzone</name>
<affiliation>
<inist:fA14 i1="02">
<s1>ETH</s1>
<s2>Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Piffaretti, Filippo" sort="Piffaretti, Filippo" uniqKey="Piffaretti F" first="Filippo" last="Piffaretti">Filippo Piffaretti</name>
<affiliation>
<inist:fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gassert, Roger" sort="Gassert, Roger" uniqKey="Gassert R" first="Roger" last="Gassert">Roger Gassert</name>
<affiliation>
<inist:fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nakao, Masayuki" sort="Nakao, Masayuki" uniqKey="Nakao M" first="Masayuki" last="Nakao">Masayuki Nakao</name>
<affiliation>
<inist:fA14 i1="01">
<s1>The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bleuler, Hannes" sort="Bleuler, Hannes" uniqKey="Bleuler H" first="Hannes" last="Bleuler">Hannes Bleuler</name>
<affiliation>
<inist:fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">SPIE proceedings series</title>
<idno type="ISSN">1017-2653</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">SPIE proceedings series</title>
<idno type="ISSN">1017-2653</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuator</term>
<term>Comparative study</term>
<term>Composite material</term>
<term>Experimental study</term>
<term>Finite element method</term>
<term>Laser beam machining</term>
<term>Membrane</term>
<term>Metal</term>
<term>Modeling</term>
<term>Object recognition</term>
<term>Pattern recognition</term>
<term>Patterning</term>
<term>Polymer</term>
<term>Three dimensional model</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Actionneur</term>
<term>Métal</term>
<term>Polymère</term>
<term>Matériau composite</term>
<term>Méthode élément fini</term>
<term>Membrane</term>
<term>Usinage laser</term>
<term>Formation motif</term>
<term>Etude comparative</term>
<term>Modèle 3 dimensions</term>
<term>Reconnaissance forme</term>
<term>Reconnaissance objet</term>
<term>Etude expérimentale</term>
<term>Modélisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Based on the concept of Mazzone et al. [1], we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1017-2653</s0>
</fA01>
<fA05>
<s2>5759</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>IPMC actuator array as 3-d haptic display</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Electroactive polymer actuators and devices (EAPAD) : San Diego CA, 7-10 March 2005</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>NAKANO (Masanori)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAZZONE (Andrea)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PIFFARETTI (Filippo)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GASSERT (Roger)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NAKAO (Masayuki)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BLEULER (Hannes)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BAR-COHEN (Yoseph)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ETH</s1>
<s2>Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>International Society for Optical Engineering</s1>
<s2>Bellingham WA</s2>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>331-339</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>0-8194-5740-X</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000124410520370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0127301</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>SPIE proceedings series</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Based on the concept of Mazzone et al. [1], we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D10A08</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Actionneur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Actuator</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Accionador</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Métal</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Metal</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Metal</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Membrane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Membrane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Membrana</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Usinage laser</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Laser beam machining</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecanizado láser</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Formation motif</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Patterning</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Formacíon motivo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Reconnaissance forme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Pattern recognition</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Reconocimiento patrón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Reconnaissance objet</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Object recognition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>31</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Electroactive polymer actuators and devices. Conference</s1>
<s3>San Diego CA USA</s3>
<s4>2005-03-07</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 06-0127301 INIST</NO>
<ET>IPMC actuator array as 3-d haptic display</ET>
<AU>NAKANO (Masanori); MAZZONE (Andrea); PIFFARETTI (Filippo); GASSERT (Roger); NAKAO (Masayuki); BLEULER (Hannes); BAR-COHEN (Yoseph)</AU>
<AF>The University of Tokyo/Japon (1 aut., 5 aut.); ETH/Zurich/Suisse (2 aut.); EPFL/Lausanne/Suisse (3 aut., 4 aut., 6 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>SPIE proceedings series; ISSN 1017-2653; Etats-Unis; Da. 2005; Vol. 5759; Pp. 331-339; Bibl. 12 ref.</SO>
<LA>Anglais</LA>
<EA>Based on the concept of Mazzone et al. [1], we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.</EA>
<CC>001D10A08</CC>
<FD>Actionneur; Métal; Polymère; Matériau composite; Méthode élément fini; Membrane; Usinage laser; Formation motif; Etude comparative; Modèle 3 dimensions; Reconnaissance forme; Reconnaissance objet; Etude expérimentale; Modélisation</FD>
<ED>Actuator; Metal; Polymer; Composite material; Finite element method; Membrane; Laser beam machining; Patterning; Comparative study; Three dimensional model; Pattern recognition; Object recognition; Experimental study; Modeling</ED>
<SD>Accionador; Metal; Polímero; Material compuesto; Método elemento finito; Membrana; Mecanizado láser; Formacíon motivo; Estudio comparativo; Modelo 3 dimensiones; Reconocimiento patrón; Estudio experimental; Modelización</SD>
<LO>INIST-21760.354000124410520370</LO>
<ID>06-0127301</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000D89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0127301
   |texte=   IPMC actuator array as 3-d haptic display
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024