Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MIMO output estimation with reduced multirate sampling for real-time haptic rendering

Identifieur interne : 000B09 ( PascalFrancis/Corpus ); précédent : 000B08; suivant : 000B10

MIMO output estimation with reduced multirate sampling for real-time haptic rendering

Auteurs : Kyungno Lee ; DOO YONG LEE

Source :

RBID : Pascal:07-0451859

Descripteurs français

English descriptors

Abstract

This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input-multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input-output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input-output relationship of the deformation model. The parameters of the discrete input-output model are adjusted online. Intersample outputs are computed from the estimated input-output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1552-3098
A03   1    @0 IEEE trans. robot.
A05       @2 23
A06       @2 3
A08 01  1  ENG  @1 MIMO output estimation with reduced multirate sampling for real-time haptic rendering
A11 01  1    @1 LEE (Kyungno)
A11 02  1    @1 DOO YONG LEE
A14 01      @1 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology @2 Daejeon 305-701 @3 KOR @Z 1 aut. @Z 2 aut.
A20       @1 481-493
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 21023A @5 354000162960560080
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 46 ref.
A47 01  1    @0 07-0451859
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on robotics
A66 01      @0 USA
C01 01    ENG  @0 This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input-multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input-output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input-output relationship of the deformation model. The parameters of the discrete input-output model are adjusted online. Intersample outputs are computed from the estimated input-output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.
C02 01  X    @0 001D02D05
C02 02  X    @0 001D02D11
C03 01  X  FRE  @0 Système MIMO @5 06
C03 01  X  ENG  @0 MIMO system @5 06
C03 01  X  SPA  @0 Sistema MIMO @5 06
C03 02  X  FRE  @0 Identification système @5 07
C03 02  X  ENG  @0 System identification @5 07
C03 02  X  SPA  @0 Identificación sistema @5 07
C03 03  X  FRE  @0 Système multicadence @5 08
C03 03  X  ENG  @0 Multirate system @5 08
C03 03  X  SPA  @0 Sistema cadencia múltiple @5 08
C03 04  X  FRE  @0 Echantillonnage @5 09
C03 04  X  ENG  @0 Sampling @5 09
C03 04  X  SPA  @0 Muestreo @5 09
C03 05  X  FRE  @0 Temps réel @5 10
C03 05  X  ENG  @0 Real time @5 10
C03 05  X  SPA  @0 Tiempo real @5 10
C03 06  X  FRE  @0 Sensibilité tactile @5 18
C03 06  X  ENG  @0 Tactile sensitivity @5 18
C03 06  X  SPA  @0 Sensibilidad tactil @5 18
C03 07  X  FRE  @0 Grande déformation @5 19
C03 07  X  ENG  @0 High strain @5 19
C03 07  X  SPA  @0 Gran deformación @5 19
C03 08  X  FRE  @0 Temps retard @5 20
C03 08  X  ENG  @0 Delay time @5 20
C03 08  X  SPA  @0 Tiempo retardo @5 20
C03 09  X  FRE  @0 Stabilité fréquence @5 21
C03 09  X  ENG  @0 Frequency stability @5 21
C03 09  X  SPA  @0 Estabilidad frecuencia @5 21
C03 10  X  FRE  @0 Représentation graphique @5 22
C03 10  X  ENG  @0 Graphics @5 22
C03 10  X  SPA  @0 Grafo (curva) @5 22
C03 11  X  FRE  @0 Erreur sortie @5 23
C03 11  X  ENG  @0 Output error @5 23
C03 11  X  SPA  @0 Error salida @5 23
C03 12  X  FRE  @0 Signal sortie @5 28
C03 12  X  ENG  @0 Output signal @5 28
C03 12  X  SPA  @0 Señal salida @5 28
C03 13  X  FRE  @0 Modélisation @5 29
C03 13  X  ENG  @0 Modeling @5 29
C03 13  X  SPA  @0 Modelización @5 29
C03 14  X  FRE  @0 Méthode élément fini @5 30
C03 14  X  ENG  @0 Finite element method @5 30
C03 14  X  SPA  @0 Método elemento finito @5 30
C03 15  X  FRE  @0 Système masse ressort @5 31
C03 15  X  ENG  @0 Spring mass system @5 31
C03 15  X  SPA  @0 Sistema masa muelle @5 31
C03 16  X  FRE  @0 Approche déterministe @5 32
C03 16  X  ENG  @0 Deterministic approach @5 32
C03 16  X  SPA  @0 Enfoque determinista @5 32
C03 17  X  FRE  @0 Modèle entrée sortie @5 33
C03 17  X  ENG  @0 Input output model @5 33
C03 17  X  SPA  @0 Modelo input-output @5 33
C03 18  X  FRE  @0 Méthode moindre carré @5 34
C03 18  X  ENG  @0 Least squares method @5 34
C03 18  X  SPA  @0 Método cuadrado menor @5 34
C03 19  X  FRE  @0 Estimation erreur @5 35
C03 19  X  ENG  @0 Error estimation @5 35
C03 19  X  SPA  @0 Estimación error @5 35
C03 20  X  FRE  @0 Erreur estimation @5 36
C03 20  X  ENG  @0 Estimation error @5 36
C03 20  X  SPA  @0 Error estimación @5 36
C03 21  X  FRE  @0 Méthode graphique @5 37
C03 21  X  ENG  @0 Graphic method @5 37
C03 21  X  SPA  @0 Método gráfico @5 37
C03 22  X  FRE  @0 Convergence numérique @5 38
C03 22  X  ENG  @0 Numerical convergence @5 38
C03 22  X  SPA  @0 Convergencia numérica @5 38
N21       @1 295
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0451859 INIST
ET : MIMO output estimation with reduced multirate sampling for real-time haptic rendering
AU : LEE (Kyungno); DOO YONG LEE
AF : Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology/Daejeon 305-701/Corée, République de (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on robotics ; ISSN 1552-3098; Etats-Unis; Da. 2007; Vol. 23; No. 3; Pp. 481-493; Bibl. 46 ref.
LA : Anglais
EA : This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input-multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input-output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input-output relationship of the deformation model. The parameters of the discrete input-output model are adjusted online. Intersample outputs are computed from the estimated input-output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.
CC : 001D02D05; 001D02D11
FD : Système MIMO; Identification système; Système multicadence; Echantillonnage; Temps réel; Sensibilité tactile; Grande déformation; Temps retard; Stabilité fréquence; Représentation graphique; Erreur sortie; Signal sortie; Modélisation; Méthode élément fini; Système masse ressort; Approche déterministe; Modèle entrée sortie; Méthode moindre carré; Estimation erreur; Erreur estimation; Méthode graphique; Convergence numérique
ED : MIMO system; System identification; Multirate system; Sampling; Real time; Tactile sensitivity; High strain; Delay time; Frequency stability; Graphics; Output error; Output signal; Modeling; Finite element method; Spring mass system; Deterministic approach; Input output model; Least squares method; Error estimation; Estimation error; Graphic method; Numerical convergence
SD : Sistema MIMO; Identificación sistema; Sistema cadencia múltiple; Muestreo; Tiempo real; Sensibilidad tactil; Gran deformación; Tiempo retardo; Estabilidad frecuencia; Grafo (curva); Error salida; Señal salida; Modelización; Método elemento finito; Sistema masa muelle; Enfoque determinista; Modelo input-output; Método cuadrado menor; Estimación error; Error estimación; Método gráfico; Convergencia numérica
LO : INIST-21023A.354000162960560080
ID : 07-0451859

Links to Exploration step

Pascal:07-0451859

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">MIMO output estimation with reduced multirate sampling for real-time haptic rendering</title>
<author>
<name sortKey="Lee, Kyungno" sort="Lee, Kyungno" uniqKey="Lee K" first="Kyungno" last="Lee">Kyungno Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Doo Yong Lee" sort="Doo Yong Lee" uniqKey="Doo Yong Lee" last="Doo Yong Lee">DOO YONG LEE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0451859</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0451859 INIST</idno>
<idno type="RBID">Pascal:07-0451859</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">MIMO output estimation with reduced multirate sampling for real-time haptic rendering</title>
<author>
<name sortKey="Lee, Kyungno" sort="Lee, Kyungno" uniqKey="Lee K" first="Kyungno" last="Lee">Kyungno Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Doo Yong Lee" sort="Doo Yong Lee" uniqKey="Doo Yong Lee" last="Doo Yong Lee">DOO YONG LEE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on robotics </title>
<title level="j" type="abbreviated">IEEE trans. robot. </title>
<idno type="ISSN">1552-3098</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on robotics </title>
<title level="j" type="abbreviated">IEEE trans. robot. </title>
<idno type="ISSN">1552-3098</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Delay time</term>
<term>Deterministic approach</term>
<term>Error estimation</term>
<term>Estimation error</term>
<term>Finite element method</term>
<term>Frequency stability</term>
<term>Graphic method</term>
<term>Graphics</term>
<term>High strain</term>
<term>Input output model</term>
<term>Least squares method</term>
<term>MIMO system</term>
<term>Modeling</term>
<term>Multirate system</term>
<term>Numerical convergence</term>
<term>Output error</term>
<term>Output signal</term>
<term>Real time</term>
<term>Sampling</term>
<term>Spring mass system</term>
<term>System identification</term>
<term>Tactile sensitivity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Système MIMO</term>
<term>Identification système</term>
<term>Système multicadence</term>
<term>Echantillonnage</term>
<term>Temps réel</term>
<term>Sensibilité tactile</term>
<term>Grande déformation</term>
<term>Temps retard</term>
<term>Stabilité fréquence</term>
<term>Représentation graphique</term>
<term>Erreur sortie</term>
<term>Signal sortie</term>
<term>Modélisation</term>
<term>Méthode élément fini</term>
<term>Système masse ressort</term>
<term>Approche déterministe</term>
<term>Modèle entrée sortie</term>
<term>Méthode moindre carré</term>
<term>Estimation erreur</term>
<term>Erreur estimation</term>
<term>Méthode graphique</term>
<term>Convergence numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input-multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input-output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input-output relationship of the deformation model. The parameters of the discrete input-output model are adjusted online. Intersample outputs are computed from the estimated input-output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1552-3098</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. robot. </s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>MIMO output estimation with reduced multirate sampling for real-time haptic rendering</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEE (Kyungno)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DOO YONG LEE</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>481-493</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023A</s2>
<s5>354000162960560080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0451859</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on robotics </s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input-multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input-output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input-output relationship of the deformation model. The parameters of the discrete input-output model are adjusted online. Intersample outputs are computed from the estimated input-output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Système MIMO</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>MIMO system</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema MIMO</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Identification système</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>System identification</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Identificación sistema</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système multicadence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Multirate system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema cadencia múltiple</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Echantillonnage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Sampling</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Muestreo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Real time</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Grande déformation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>High strain</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Gran deformación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Temps retard</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Delay time</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tiempo retardo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Stabilité fréquence</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Frequency stability</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estabilidad frecuencia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Représentation graphique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Graphics</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Grafo (curva)</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Erreur sortie</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Output error</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Error salida</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Signal sortie</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Output signal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Señal salida</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Système masse ressort</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Spring mass system</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Sistema masa muelle</s0>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Approche déterministe</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Deterministic approach</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Enfoque determinista</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modèle entrée sortie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Input output model</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelo input-output</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Méthode moindre carré</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Least squares method</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Método cuadrado menor</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Estimation erreur</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Error estimation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estimación error</s0>
<s5>35</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Erreur estimation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Estimation error</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Error estimación</s0>
<s5>36</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Méthode graphique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Graphic method</s0>
<s5>37</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Método gráfico</s0>
<s5>37</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Convergence numérique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Numerical convergence</s0>
<s5>38</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Convergencia numérica</s0>
<s5>38</s5>
</fC03>
<fN21>
<s1>295</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0451859 INIST</NO>
<ET>MIMO output estimation with reduced multirate sampling for real-time haptic rendering</ET>
<AU>LEE (Kyungno); DOO YONG LEE</AU>
<AF>Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology/Daejeon 305-701/Corée, République de (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on robotics ; ISSN 1552-3098; Etats-Unis; Da. 2007; Vol. 23; No. 3; Pp. 481-493; Bibl. 46 ref.</SO>
<LA>Anglais</LA>
<EA>This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input-multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input-output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input-output relationship of the deformation model. The parameters of the discrete input-output model are adjusted online. Intersample outputs are computed from the estimated input-output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.</EA>
<CC>001D02D05; 001D02D11</CC>
<FD>Système MIMO; Identification système; Système multicadence; Echantillonnage; Temps réel; Sensibilité tactile; Grande déformation; Temps retard; Stabilité fréquence; Représentation graphique; Erreur sortie; Signal sortie; Modélisation; Méthode élément fini; Système masse ressort; Approche déterministe; Modèle entrée sortie; Méthode moindre carré; Estimation erreur; Erreur estimation; Méthode graphique; Convergence numérique</FD>
<ED>MIMO system; System identification; Multirate system; Sampling; Real time; Tactile sensitivity; High strain; Delay time; Frequency stability; Graphics; Output error; Output signal; Modeling; Finite element method; Spring mass system; Deterministic approach; Input output model; Least squares method; Error estimation; Estimation error; Graphic method; Numerical convergence</ED>
<SD>Sistema MIMO; Identificación sistema; Sistema cadencia múltiple; Muestreo; Tiempo real; Sensibilidad tactil; Gran deformación; Tiempo retardo; Estabilidad frecuencia; Grafo (curva); Error salida; Señal salida; Modelización; Método elemento finito; Sistema masa muelle; Enfoque determinista; Modelo input-output; Método cuadrado menor; Estimación error; Error estimación; Método gráfico; Convergencia numérica</SD>
<LO>INIST-21023A.354000162960560080</LO>
<ID>07-0451859</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000B09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0451859
   |texte=   MIMO output estimation with reduced multirate sampling for real-time haptic rendering
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024