Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Discrete-time bilateral teleoperation : modelling and stability analysis

Identifieur interne : 000929 ( PascalFrancis/Corpus ); précédent : 000928; suivant : 000930

Discrete-time bilateral teleoperation : modelling and stability analysis

Auteurs : M. Tavakoli ; A. Azimmejad ; R. V. Patel ; M. Moallem

Source :

RBID : Pascal:08-0346973

Descripteurs français

English descriptors

Abstract

Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master-slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period-environment stiffness tradeoff and the stability-transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1751-8644
A05       @2 2
A06       @2 6
A08 01  1  ENG  @1 Discrete-time bilateral teleoperation : modelling and stability analysis
A11 01  1    @1 TAVAKOLI (M.)
A11 02  1    @1 AZIMMEJAD (A.)
A11 03  1    @1 PATEL (R. V.)
A11 04  1    @1 MOALLEM (M.)
A14 01      @1 School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street @2 Cambridge, MA 02138 @3 USA @Z 1 aut.
A14 02      @1 Department of Electrical and Computer Engineering, University of Western Ontario @2 London, ON, N6A 5B9 @3 CAN @Z 2 aut. @Z 3 aut.
A14 03      @1 Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road @2 London, ON, N6A SA5 @3 CAN @Z 2 aut. @Z 3 aut.
A14 04      @1 School of Engineering Science, Simon Fraser University @2 Burnaby, BC, V5A 1S6 @3 CAN @Z 4 aut.
A20       @1 496-512
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 7573D @5 354000196218390060
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 29 ref.
A47 01  1    @0 08-0346973
A60       @1 P
A61       @0 A
A64 01  1    @0 IET control theory & applications : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master-slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period-environment stiffness tradeoff and the stability-transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.
C02 01  X    @0 001D02D11
C03 01  X  FRE  @0 Temps discret @5 06
C03 01  X  ENG  @0 Discrete time @5 06
C03 01  X  SPA  @0 Tiempo discreto @5 06
C03 02  X  FRE  @0 Téléopération @5 07
C03 02  X  ENG  @0 Remote operation @5 07
C03 02  X  SPA  @0 Teleacción @5 07
C03 03  X  FRE  @0 Commande numérique @5 08
C03 03  X  ENG  @0 Digital control @5 08
C03 03  X  SPA  @0 Mando numérico @5 08
C03 04  X  FRE  @0 Passivité @5 09
C03 04  X  ENG  @0 Passivity @5 09
C03 04  X  SPA  @0 Pasividad @5 09
C03 05  X  FRE  @0 Domaine stabilité @5 10
C03 05  X  ENG  @0 Stability region @5 10
C03 05  X  SPA  @0 Dominio estabilidad @5 10
C03 06  X  FRE  @0 Echantillonnage @5 11
C03 06  X  ENG  @0 Sampling @5 11
C03 06  X  SPA  @0 Muestreo @5 11
C03 07  X  FRE  @0 Robotique @5 12
C03 07  X  ENG  @0 Robotics @5 12
C03 07  X  SPA  @0 Robótica @5 12
C03 08  X  FRE  @0 Relation maître esclave @5 18
C03 08  X  ENG  @0 Master slave relationship @5 18
C03 08  X  SPA  @0 Relación maestro esclavo @5 18
C03 09  X  FRE  @0 Temps continu @5 19
C03 09  X  ENG  @0 Continuous time @5 19
C03 09  X  SPA  @0 Tiempo continuo @5 19
C03 10  X  FRE  @0 Interface utilisateur @5 20
C03 10  X  ENG  @0 User interface @5 20
C03 10  X  SPA  @0 Interfase usuario @5 20
C03 11  X  FRE  @0 Bilatéral @5 21
C03 11  X  ENG  @0 Bilateral @5 21
C03 11  X  SPA  @0 Bilateral @5 21
C03 12  X  FRE  @0 Transparence @5 22
C03 12  X  ENG  @0 Transparency @5 22
C03 12  X  SPA  @0 Transparencia @5 22
C03 13  X  FRE  @0 Limite stabilité @5 23
C03 13  X  ENG  @0 Stability boundary @5 23
C03 13  X  SPA  @0 Límite estabilidad @5 23
C03 14  X  FRE  @0 Modélisation @5 28
C03 14  X  ENG  @0 Modeling @5 28
C03 14  X  SPA  @0 Modelización @5 28
C03 15  X  FRE  @0 Borne inférieure @5 29
C03 15  X  ENG  @0 Lower bound @5 29
C03 15  X  SPA  @0 Cota inferior @5 29
C03 16  X  FRE  @0 Borne supérieure @5 30
C03 16  X  ENG  @0 Upper bound @5 30
C03 16  X  SPA  @0 Cota superior @5 30
C03 17  X  FRE  @0 Taux échantillonnage @5 31
C03 17  X  ENG  @0 Sampling rate @5 31
C03 17  X  SPA  @0 Razón muestreo @5 31
C03 18  X  FRE  @0 Fonction transfert @5 32
C03 18  X  ENG  @0 Transfer function @5 32
C03 18  X  SPA  @0 Función traspaso @5 32
N21       @1 217
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0346973 INIST
ET : Discrete-time bilateral teleoperation : modelling and stability analysis
AU : TAVAKOLI (M.); AZIMMEJAD (A.); PATEL (R. V.); MOALLEM (M.)
AF : School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street/Cambridge, MA 02138/Etats-Unis (1 aut.); Department of Electrical and Computer Engineering, University of Western Ontario/London, ON, N6A 5B9/Canada (2 aut., 3 aut.); Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road/London, ON, N6A SA5/Canada (2 aut., 3 aut.); School of Engineering Science, Simon Fraser University/Burnaby, BC, V5A 1S6/Canada (4 aut.)
DT : Publication en série; Niveau analytique
SO : IET control theory & applications : (Print); ISSN 1751-8644; Royaume-Uni; Da. 2008; Vol. 2; No. 6; Pp. 496-512; Bibl. 29 ref.
LA : Anglais
EA : Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master-slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period-environment stiffness tradeoff and the stability-transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.
CC : 001D02D11
FD : Temps discret; Téléopération; Commande numérique; Passivité; Domaine stabilité; Echantillonnage; Robotique; Relation maître esclave; Temps continu; Interface utilisateur; Bilatéral; Transparence; Limite stabilité; Modélisation; Borne inférieure; Borne supérieure; Taux échantillonnage; Fonction transfert
ED : Discrete time; Remote operation; Digital control; Passivity; Stability region; Sampling; Robotics; Master slave relationship; Continuous time; User interface; Bilateral; Transparency; Stability boundary; Modeling; Lower bound; Upper bound; Sampling rate; Transfer function
SD : Tiempo discreto; Teleacción; Mando numérico; Pasividad; Dominio estabilidad; Muestreo; Robótica; Relación maestro esclavo; Tiempo continuo; Interfase usuario; Bilateral; Transparencia; Límite estabilidad; Modelización; Cota inferior; Cota superior; Razón muestreo; Función traspaso
LO : INIST-7573D.354000196218390060
ID : 08-0346973

Links to Exploration step

Pascal:08-0346973

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Discrete-time bilateral teleoperation : modelling and stability analysis</title>
<author>
<name sortKey="Tavakoli, M" sort="Tavakoli, M" uniqKey="Tavakoli M" first="M." last="Tavakoli">M. Tavakoli</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Azimmejad, A" sort="Azimmejad, A" uniqKey="Azimmejad A" first="A." last="Azimmejad">A. Azimmejad</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Western Ontario</s1>
<s2>London, ON, N6A 5B9</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road</s1>
<s2>London, ON, N6A SA5</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patel, R V" sort="Patel, R V" uniqKey="Patel R" first="R. V." last="Patel">R. V. Patel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Western Ontario</s1>
<s2>London, ON, N6A 5B9</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road</s1>
<s2>London, ON, N6A SA5</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moallem, M" sort="Moallem, M" uniqKey="Moallem M" first="M." last="Moallem">M. Moallem</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Engineering Science, Simon Fraser University</s1>
<s2>Burnaby, BC, V5A 1S6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0346973</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0346973 INIST</idno>
<idno type="RBID">Pascal:08-0346973</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000929</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Discrete-time bilateral teleoperation : modelling and stability analysis</title>
<author>
<name sortKey="Tavakoli, M" sort="Tavakoli, M" uniqKey="Tavakoli M" first="M." last="Tavakoli">M. Tavakoli</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Azimmejad, A" sort="Azimmejad, A" uniqKey="Azimmejad A" first="A." last="Azimmejad">A. Azimmejad</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Western Ontario</s1>
<s2>London, ON, N6A 5B9</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road</s1>
<s2>London, ON, N6A SA5</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patel, R V" sort="Patel, R V" uniqKey="Patel R" first="R. V." last="Patel">R. V. Patel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Western Ontario</s1>
<s2>London, ON, N6A 5B9</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road</s1>
<s2>London, ON, N6A SA5</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moallem, M" sort="Moallem, M" uniqKey="Moallem M" first="M." last="Moallem">M. Moallem</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Engineering Science, Simon Fraser University</s1>
<s2>Burnaby, BC, V5A 1S6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IET control theory & applications : (Print)</title>
<idno type="ISSN">1751-8644</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IET control theory & applications : (Print)</title>
<idno type="ISSN">1751-8644</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bilateral</term>
<term>Continuous time</term>
<term>Digital control</term>
<term>Discrete time</term>
<term>Lower bound</term>
<term>Master slave relationship</term>
<term>Modeling</term>
<term>Passivity</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>Sampling</term>
<term>Sampling rate</term>
<term>Stability boundary</term>
<term>Stability region</term>
<term>Transfer function</term>
<term>Transparency</term>
<term>Upper bound</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Temps discret</term>
<term>Téléopération</term>
<term>Commande numérique</term>
<term>Passivité</term>
<term>Domaine stabilité</term>
<term>Echantillonnage</term>
<term>Robotique</term>
<term>Relation maître esclave</term>
<term>Temps continu</term>
<term>Interface utilisateur</term>
<term>Bilatéral</term>
<term>Transparence</term>
<term>Limite stabilité</term>
<term>Modélisation</term>
<term>Borne inférieure</term>
<term>Borne supérieure</term>
<term>Taux échantillonnage</term>
<term>Fonction transfert</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master-slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period-environment stiffness tradeoff and the stability-transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1751-8644</s0>
</fA01>
<fA05>
<s2>2</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Discrete-time bilateral teleoperation : modelling and stability analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TAVAKOLI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AZIMMEJAD (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PATEL (R. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MOALLEM (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Western Ontario</s1>
<s2>London, ON, N6A 5B9</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road</s1>
<s2>London, ON, N6A SA5</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Engineering Science, Simon Fraser University</s1>
<s2>Burnaby, BC, V5A 1S6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>496-512</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7573D</s2>
<s5>354000196218390060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0346973</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IET control theory & applications : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master-slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period-environment stiffness tradeoff and the stability-transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Temps discret</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Discrete time</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tiempo discreto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Commande numérique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Digital control</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Mando numérico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Passivité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Passivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Pasividad</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Domaine stabilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Stability region</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dominio estabilidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Echantillonnage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sampling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Muestreo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relation maître esclave</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Master slave relationship</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relación maestro esclavo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Temps continu</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Continuous time</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tiempo continuo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>User interface</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Bilatéral</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Bilateral</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Bilateral</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Transparence</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Transparency</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Transparencia</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Limite stabilité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stability boundary</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Límite estabilidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Borne inférieure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Lower bound</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cota inferior</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Borne supérieure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Upper bound</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cota superior</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Taux échantillonnage</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Sampling rate</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Razón muestreo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Fonction transfert</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Transfer function</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Función traspaso</s0>
<s5>32</s5>
</fC03>
<fN21>
<s1>217</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0346973 INIST</NO>
<ET>Discrete-time bilateral teleoperation : modelling and stability analysis</ET>
<AU>TAVAKOLI (M.); AZIMMEJAD (A.); PATEL (R. V.); MOALLEM (M.)</AU>
<AF>School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street/Cambridge, MA 02138/Etats-Unis (1 aut.); Department of Electrical and Computer Engineering, University of Western Ontario/London, ON, N6A 5B9/Canada (2 aut., 3 aut.); Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road/London, ON, N6A SA5/Canada (2 aut., 3 aut.); School of Engineering Science, Simon Fraser University/Burnaby, BC, V5A 1S6/Canada (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IET control theory & applications : (Print); ISSN 1751-8644; Royaume-Uni; Da. 2008; Vol. 2; No. 6; Pp. 496-512; Bibl. 29 ref.</SO>
<LA>Anglais</LA>
<EA>Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master-slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period-environment stiffness tradeoff and the stability-transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.</EA>
<CC>001D02D11</CC>
<FD>Temps discret; Téléopération; Commande numérique; Passivité; Domaine stabilité; Echantillonnage; Robotique; Relation maître esclave; Temps continu; Interface utilisateur; Bilatéral; Transparence; Limite stabilité; Modélisation; Borne inférieure; Borne supérieure; Taux échantillonnage; Fonction transfert</FD>
<ED>Discrete time; Remote operation; Digital control; Passivity; Stability region; Sampling; Robotics; Master slave relationship; Continuous time; User interface; Bilateral; Transparency; Stability boundary; Modeling; Lower bound; Upper bound; Sampling rate; Transfer function</ED>
<SD>Tiempo discreto; Teleacción; Mando numérico; Pasividad; Dominio estabilidad; Muestreo; Robótica; Relación maestro esclavo; Tiempo continuo; Interfase usuario; Bilateral; Transparencia; Límite estabilidad; Modelización; Cota inferior; Cota superior; Razón muestreo; Función traspaso</SD>
<LO>INIST-7573D.354000196218390060</LO>
<ID>08-0346973</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000929 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000929 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0346973
   |texte=   Discrete-time bilateral teleoperation : modelling and stability analysis
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024