Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control

Identifieur interne : 000859 ( PascalFrancis/Corpus ); précédent : 000858; suivant : 000860

Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control

Auteurs : Ryan Brydges ; Adam Dubrowski

Source :

RBID : Francis:09-0409101

Descripteurs français

English descriptors

Abstract

Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0014-4819
A02 01      @0 EXBRAP
A03   1    @0 Exp. brain res.
A05       @2 198
A06       @2 4
A08 01  1  ENG  @1 Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control
A11 01  1    @1 BRYDGES (Ryan)
A11 02  1    @1 DUBROWSKI (Adam)
A14 01      @1 Institute of Medical Science, University of Toronto @2 Toronto, ON @3 CAN @Z 1 aut.
A14 02      @1 Wilson Centre, University of Toronto @2 Toronto, ON @3 CAN @Z 1 aut. @Z 2 aut.
A14 03      @1 Lawrence S. Bloomberg Faculty of Nursing, University of Toronto @2 Toronto, ON @3 CAN @Z 2 aut.
A20       @1 445-453
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 12535 @5 354000188114230020
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 09-0409101
A60       @1 P
A61       @0 A
A64 01  1    @0 Experimental brain research
A66 01      @0 DEU
C01 01    ENG  @0 Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.
C02 01  X    @0 770B03D @1 II
C03 01  X  FRE  @0 Evitement @5 01
C03 01  X  ENG  @0 Avoidance @5 01
C03 01  X  SPA  @0 Evitación @5 01
C03 02  X  FRE  @0 Mémoire @5 02
C03 02  X  ENG  @0 Memory @5 02
C03 02  X  SPA  @0 Memoria @5 02
C03 03  X  FRE  @0 Préhension @5 03
C03 03  X  ENG  @0 Gripping @5 03
C03 03  X  SPA  @0 Prension @5 03
C03 04  X  FRE  @0 Incertitude @5 04
C03 04  X  ENG  @0 Uncertainty @5 04
C03 04  X  SPA  @0 Incertidumbre @5 04
C03 05  X  FRE  @0 Repère visuel @5 05
C03 05  X  ENG  @0 Visual cue @5 05
C03 05  X  SPA  @0 Marca visual @5 05
C03 06  X  FRE  @0 Cinématique @5 06
C03 06  X  ENG  @0 Kinematics @5 06
C03 06  X  SPA  @0 Cinemática @5 06
C03 07  X  FRE  @0 Force @5 07
C03 07  X  ENG  @0 Force @5 07
C03 07  X  SPA  @0 Fuerza @5 07
C03 08  X  FRE  @0 Charge @5 08
C03 08  X  ENG  @0 Load @5 08
C03 08  X  SPA  @0 Carga @5 08
C03 09  X  FRE  @0 Intégration multisensorielle @5 10
C03 09  X  ENG  @0 Multisensory integration @5 10
C03 09  X  SPA  @0 Integración multisensorial @5 10
C03 10  X  FRE  @0 Homme @5 54
C03 10  X  ENG  @0 Human @5 54
C03 10  X  SPA  @0 Hombre @5 54
C03 11  X  FRE  @0 Perception haptique @4 CD @5 96
C03 11  X  ENG  @0 Haptic perception @4 CD @5 96
N21       @1 299
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : FRANCIS 09-0409101 INIST
ET : Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control
AU : BRYDGES (Ryan); DUBROWSKI (Adam)
AF : Institute of Medical Science, University of Toronto/Toronto, ON/Canada (1 aut.); Wilson Centre, University of Toronto/Toronto, ON/Canada (1 aut., 2 aut.); Lawrence S. Bloomberg Faculty of Nursing, University of Toronto/Toronto, ON/Canada (2 aut.)
DT : Publication en série; Niveau analytique
SO : Experimental brain research; ISSN 0014-4819; Coden EXBRAP; Allemagne; Da. 2009; Vol. 198; No. 4; Pp. 445-453; Bibl. 1/2 p.
LA : Anglais
EA : Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.
CC : 770B03D
FD : Evitement; Mémoire; Préhension; Incertitude; Repère visuel; Cinématique; Force; Charge; Intégration multisensorielle; Homme; Perception haptique
ED : Avoidance; Memory; Gripping; Uncertainty; Visual cue; Kinematics; Force; Load; Multisensory integration; Human; Haptic perception
SD : Evitación; Memoria; Prension; Incertidumbre; Marca visual; Cinemática; Fuerza; Carga; Integración multisensorial; Hombre
LO : INIST-12535.354000188114230020
ID : 09-0409101

Links to Exploration step

Francis:09-0409101

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control</title>
<author>
<name sortKey="Brydges, Ryan" sort="Brydges, Ryan" uniqKey="Brydges R" first="Ryan" last="Brydges">Ryan Brydges</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Wilson Centre, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dubrowski, Adam" sort="Dubrowski, Adam" uniqKey="Dubrowski A" first="Adam" last="Dubrowski">Adam Dubrowski</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Wilson Centre, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Lawrence S. Bloomberg Faculty of Nursing, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0409101</idno>
<date when="2009">2009</date>
<idno type="stanalyst">FRANCIS 09-0409101 INIST</idno>
<idno type="RBID">Francis:09-0409101</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000859</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control</title>
<author>
<name sortKey="Brydges, Ryan" sort="Brydges, Ryan" uniqKey="Brydges R" first="Ryan" last="Brydges">Ryan Brydges</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Wilson Centre, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dubrowski, Adam" sort="Dubrowski, Adam" uniqKey="Dubrowski A" first="Adam" last="Dubrowski">Adam Dubrowski</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Wilson Centre, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Lawrence S. Bloomberg Faculty of Nursing, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Avoidance</term>
<term>Force</term>
<term>Gripping</term>
<term>Haptic perception</term>
<term>Human</term>
<term>Kinematics</term>
<term>Load</term>
<term>Memory</term>
<term>Multisensory integration</term>
<term>Uncertainty</term>
<term>Visual cue</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evitement</term>
<term>Mémoire</term>
<term>Préhension</term>
<term>Incertitude</term>
<term>Repère visuel</term>
<term>Cinématique</term>
<term>Force</term>
<term>Charge</term>
<term>Intégration multisensorielle</term>
<term>Homme</term>
<term>Perception haptique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0014-4819</s0>
</fA01>
<fA02 i1="01">
<s0>EXBRAP</s0>
</fA02>
<fA03 i2="1">
<s0>Exp. brain res.</s0>
</fA03>
<fA05>
<s2>198</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRYDGES (Ryan)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DUBROWSKI (Adam)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Wilson Centre, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Lawrence S. Bloomberg Faculty of Nursing, University of Toronto</s1>
<s2>Toronto, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>445-453</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12535</s2>
<s5>354000188114230020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0409101</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Experimental brain research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>770B03D</s0>
<s1>II</s1>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evitement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Avoidance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evitación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mémoire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Memory</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Memoria</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Préhension</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Gripping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Prension</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Incertitude</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Uncertainty</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Incertidumbre</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Repère visuel</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Visual cue</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Marca visual</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cinématique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Kinematics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cinemática</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Force</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Force</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fuerza</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Load</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Carga</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Intégration multisensorielle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Multisensory integration</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Integración multisensorial</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Homme</s0>
<s5>54</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Human</s0>
<s5>54</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Perception haptique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Haptic perception</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>299</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>FRANCIS 09-0409101 INIST</NO>
<ET>Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control</ET>
<AU>BRYDGES (Ryan); DUBROWSKI (Adam)</AU>
<AF>Institute of Medical Science, University of Toronto/Toronto, ON/Canada (1 aut.); Wilson Centre, University of Toronto/Toronto, ON/Canada (1 aut., 2 aut.); Lawrence S. Bloomberg Faculty of Nursing, University of Toronto/Toronto, ON/Canada (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Experimental brain research; ISSN 0014-4819; Coden EXBRAP; Allemagne; Da. 2009; Vol. 198; No. 4; Pp. 445-453; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.</EA>
<CC>770B03D</CC>
<FD>Evitement; Mémoire; Préhension; Incertitude; Repère visuel; Cinématique; Force; Charge; Intégration multisensorielle; Homme; Perception haptique</FD>
<ED>Avoidance; Memory; Gripping; Uncertainty; Visual cue; Kinematics; Force; Load; Multisensory integration; Human; Haptic perception</ED>
<SD>Evitación; Memoria; Prension; Incertidumbre; Marca visual; Cinemática; Fuerza; Carga; Integración multisensorial; Hombre</SD>
<LO>INIST-12535.354000188114230020</LO>
<ID>09-0409101</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000859 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000859 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Francis:09-0409101
   |texte=   Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024