Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor

Identifieur interne : 000686 ( PascalFrancis/Corpus ); précédent : 000685; suivant : 000687

An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor

Auteurs : T. Michael Seigler ; Nishant Venkatesan ; Daniel Inman

Source :

RBID : Pascal:10-0046480

Descripteurs français

English descriptors

Abstract

The traveling wave ultrasonic motor is considered for use in haptic devices where feedback forces are required, particularly in force-feel systems where a certain input- output relation is desired between the applied torque and the response. Owing to some of its unique characteristics, there are circumstances where the ultrasonic motor may be considered an appealing alternative to the more standard DC motor. However, the two types of motors are significantly different in their principles of operation, and are not necessarily interchangeable for all applications. The ultrasonic motor is limited in that the torque cannot be arbitrarily controlled under external loading. Moreover, direct control of the motor torque is difficult due to the complex nature of the contact mechanics. To accommodate these limitations, we investigated a method of model reference force-feedback control, in which the interaction torque is used as the reference source. Experimental results demonstrated that the closed-loop system is able to approximate simple second-order behavior, thus approximating the feel of a spring and damper.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1045-389X
A03   1    @0 J. intell. mater. syst. struct.
A05       @2 20
A06       @2 12
A08 01  1  ENG  @1 An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor
A11 01  1    @1 SEIGLER (T. Michael)
A11 02  1    @1 VENKATESAN (Nishant)
A11 03  1    @1 INMAN (Daniel)
A14 01      @1 Department of Mechanical Engineering, University of Kentucky @2 Lexington @3 USA @Z 1 aut. @Z 2 aut.
A14 02      @1 Department of Mechanical Engineering @2 Virginia Tech, VA @3 USA @Z 3 aut.
A20       @1 1393-1400
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 22109 @5 354000170146720010
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 1/4 p.
A47 01  1    @0 10-0046480
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of intelligent material systems and structures
A66 01      @0 USA
C01 01    ENG  @0 The traveling wave ultrasonic motor is considered for use in haptic devices where feedback forces are required, particularly in force-feel systems where a certain input- output relation is desired between the applied torque and the response. Owing to some of its unique characteristics, there are circumstances where the ultrasonic motor may be considered an appealing alternative to the more standard DC motor. However, the two types of motors are significantly different in their principles of operation, and are not necessarily interchangeable for all applications. The ultrasonic motor is limited in that the torque cannot be arbitrarily controlled under external loading. Moreover, direct control of the motor torque is difficult due to the complex nature of the contact mechanics. To accommodate these limitations, we investigated a method of model reference force-feedback control, in which the interaction torque is used as the reference source. Experimental results demonstrated that the closed-loop system is able to approximate simple second-order behavior, thus approximating the feel of a spring and damper.
C02 01  3    @0 001B00G07M
C02 02  X    @0 001B40C38
C03 01  3  FRE  @0 Contrôle vibration @5 06
C03 01  3  ENG  @0 Vibration control @5 06
C03 02  3  FRE  @0 Moteur ultrason @5 07
C03 02  3  ENG  @0 Ultrasonic motors @5 07
C03 03  3  FRE  @0 Transducteur piézoélectrique @5 08
C03 03  3  ENG  @0 Piezoelectric transducers @5 08
C03 04  3  FRE  @0 Boucle réaction @5 09
C03 04  3  ENG  @0 Feedback @5 09
C03 05  X  FRE  @0 Couple moteur @5 10
C03 05  X  ENG  @0 Motor torque @5 10
C03 05  X  SPA  @0 Par motor @5 10
C03 06  3  FRE  @0 Contact mécanique @5 11
C03 06  3  ENG  @0 Mechanical contacts @5 11
C03 07  3  FRE  @0 Micromoteur @5 15
C03 07  3  ENG  @0 Micromotors @5 15
C03 08  3  FRE  @0 Miniaturisation @5 16
C03 08  3  ENG  @0 Miniaturization @5 16
C03 09  3  FRE  @0 Moteur électrique @5 17
C03 09  3  ENG  @0 Electric motors @5 17
C03 10  3  FRE  @0 Commande boucle fermée @5 23
C03 10  3  ENG  @0 Closed loop control @5 23
C03 11  3  FRE  @0 Entrée sortie @5 24
C03 11  3  ENG  @0 Input-output @5 24
C03 12  3  FRE  @0 Modélisation @5 25
C03 12  3  ENG  @0 Modelling @5 25
C03 13  3  FRE  @0 Etude expérimentale @5 33
C03 13  3  ENG  @0 Experimental study @5 33
N21       @1 032
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0046480 INIST
ET : An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor
AU : SEIGLER (T. Michael); VENKATESAN (Nishant); INMAN (Daniel)
AF : Department of Mechanical Engineering, University of Kentucky/Lexington/Etats-Unis (1 aut., 2 aut.); Department of Mechanical Engineering/Virginia Tech, VA/Etats-Unis (3 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of intelligent material systems and structures; ISSN 1045-389X; Etats-Unis; Da. 2009; Vol. 20; No. 12; Pp. 1393-1400; Bibl. 1/4 p.
LA : Anglais
EA : The traveling wave ultrasonic motor is considered for use in haptic devices where feedback forces are required, particularly in force-feel systems where a certain input- output relation is desired between the applied torque and the response. Owing to some of its unique characteristics, there are circumstances where the ultrasonic motor may be considered an appealing alternative to the more standard DC motor. However, the two types of motors are significantly different in their principles of operation, and are not necessarily interchangeable for all applications. The ultrasonic motor is limited in that the torque cannot be arbitrarily controlled under external loading. Moreover, direct control of the motor torque is difficult due to the complex nature of the contact mechanics. To accommodate these limitations, we investigated a method of model reference force-feedback control, in which the interaction torque is used as the reference source. Experimental results demonstrated that the closed-loop system is able to approximate simple second-order behavior, thus approximating the feel of a spring and damper.
CC : 001B00G07M; 001B40C38
FD : Contrôle vibration; Moteur ultrason; Transducteur piézoélectrique; Boucle réaction; Couple moteur; Contact mécanique; Micromoteur; Miniaturisation; Moteur électrique; Commande boucle fermée; Entrée sortie; Modélisation; Etude expérimentale
ED : Vibration control; Ultrasonic motors; Piezoelectric transducers; Feedback; Motor torque; Mechanical contacts; Micromotors; Miniaturization; Electric motors; Closed loop control; Input-output; Modelling; Experimental study
SD : Par motor
LO : INIST-22109.354000170146720010
ID : 10-0046480

Links to Exploration step

Pascal:10-0046480

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor</title>
<author>
<name sortKey="Seigler, T Michael" sort="Seigler, T Michael" uniqKey="Seigler T" first="T. Michael" last="Seigler">T. Michael Seigler</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kentucky</s1>
<s2>Lexington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Venkatesan, Nishant" sort="Venkatesan, Nishant" uniqKey="Venkatesan N" first="Nishant" last="Venkatesan">Nishant Venkatesan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kentucky</s1>
<s2>Lexington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Inman, Daniel" sort="Inman, Daniel" uniqKey="Inman D" first="Daniel" last="Inman">Daniel Inman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering</s1>
<s2>Virginia Tech, VA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0046480</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0046480 INIST</idno>
<idno type="RBID">Pascal:10-0046480</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000686</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor</title>
<author>
<name sortKey="Seigler, T Michael" sort="Seigler, T Michael" uniqKey="Seigler T" first="T. Michael" last="Seigler">T. Michael Seigler</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kentucky</s1>
<s2>Lexington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Venkatesan, Nishant" sort="Venkatesan, Nishant" uniqKey="Venkatesan N" first="Nishant" last="Venkatesan">Nishant Venkatesan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kentucky</s1>
<s2>Lexington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Inman, Daniel" sort="Inman, Daniel" uniqKey="Inman D" first="Daniel" last="Inman">Daniel Inman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering</s1>
<s2>Virginia Tech, VA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of intelligent material systems and structures</title>
<title level="j" type="abbreviated">J. intell. mater. syst. struct.</title>
<idno type="ISSN">1045-389X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of intelligent material systems and structures</title>
<title level="j" type="abbreviated">J. intell. mater. syst. struct.</title>
<idno type="ISSN">1045-389X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Closed loop control</term>
<term>Electric motors</term>
<term>Experimental study</term>
<term>Feedback</term>
<term>Input-output</term>
<term>Mechanical contacts</term>
<term>Micromotors</term>
<term>Miniaturization</term>
<term>Modelling</term>
<term>Motor torque</term>
<term>Piezoelectric transducers</term>
<term>Ultrasonic motors</term>
<term>Vibration control</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Contrôle vibration</term>
<term>Moteur ultrason</term>
<term>Transducteur piézoélectrique</term>
<term>Boucle réaction</term>
<term>Couple moteur</term>
<term>Contact mécanique</term>
<term>Micromoteur</term>
<term>Miniaturisation</term>
<term>Moteur électrique</term>
<term>Commande boucle fermée</term>
<term>Entrée sortie</term>
<term>Modélisation</term>
<term>Etude expérimentale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The traveling wave ultrasonic motor is considered for use in haptic devices where feedback forces are required, particularly in force-feel systems where a certain input- output relation is desired between the applied torque and the response. Owing to some of its unique characteristics, there are circumstances where the ultrasonic motor may be considered an appealing alternative to the more standard DC motor. However, the two types of motors are significantly different in their principles of operation, and are not necessarily interchangeable for all applications. The ultrasonic motor is limited in that the torque cannot be arbitrarily controlled under external loading. Moreover, direct control of the motor torque is difficult due to the complex nature of the contact mechanics. To accommodate these limitations, we investigated a method of model reference force-feedback control, in which the interaction torque is used as the reference source. Experimental results demonstrated that the closed-loop system is able to approximate simple second-order behavior, thus approximating the feel of a spring and damper.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1045-389X</s0>
</fA01>
<fA03 i2="1">
<s0>J. intell. mater. syst. struct.</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEIGLER (T. Michael)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VENKATESAN (Nishant)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>INMAN (Daniel)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kentucky</s1>
<s2>Lexington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mechanical Engineering</s1>
<s2>Virginia Tech, VA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1393-1400</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22109</s2>
<s5>354000170146720010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0046480</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of intelligent material systems and structures</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The traveling wave ultrasonic motor is considered for use in haptic devices where feedback forces are required, particularly in force-feel systems where a certain input- output relation is desired between the applied torque and the response. Owing to some of its unique characteristics, there are circumstances where the ultrasonic motor may be considered an appealing alternative to the more standard DC motor. However, the two types of motors are significantly different in their principles of operation, and are not necessarily interchangeable for all applications. The ultrasonic motor is limited in that the torque cannot be arbitrarily controlled under external loading. Moreover, direct control of the motor torque is difficult due to the complex nature of the contact mechanics. To accommodate these limitations, we investigated a method of model reference force-feedback control, in which the interaction torque is used as the reference source. Experimental results demonstrated that the closed-loop system is able to approximate simple second-order behavior, thus approximating the feel of a spring and damper.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07M</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001B40C38</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Contrôle vibration</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Vibration control</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Moteur ultrason</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Ultrasonic motors</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transducteur piézoélectrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Piezoelectric transducers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Boucle réaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Feedback</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couple moteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Motor torque</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Par motor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Contact mécanique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Mechanical contacts</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Micromoteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Micromotors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Miniaturisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Miniaturization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Moteur électrique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electric motors</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Commande boucle fermée</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Closed loop control</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Entrée sortie</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Input-output</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fN21>
<s1>032</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0046480 INIST</NO>
<ET>An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor</ET>
<AU>SEIGLER (T. Michael); VENKATESAN (Nishant); INMAN (Daniel)</AU>
<AF>Department of Mechanical Engineering, University of Kentucky/Lexington/Etats-Unis (1 aut., 2 aut.); Department of Mechanical Engineering/Virginia Tech, VA/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of intelligent material systems and structures; ISSN 1045-389X; Etats-Unis; Da. 2009; Vol. 20; No. 12; Pp. 1393-1400; Bibl. 1/4 p.</SO>
<LA>Anglais</LA>
<EA>The traveling wave ultrasonic motor is considered for use in haptic devices where feedback forces are required, particularly in force-feel systems where a certain input- output relation is desired between the applied torque and the response. Owing to some of its unique characteristics, there are circumstances where the ultrasonic motor may be considered an appealing alternative to the more standard DC motor. However, the two types of motors are significantly different in their principles of operation, and are not necessarily interchangeable for all applications. The ultrasonic motor is limited in that the torque cannot be arbitrarily controlled under external loading. Moreover, direct control of the motor torque is difficult due to the complex nature of the contact mechanics. To accommodate these limitations, we investigated a method of model reference force-feedback control, in which the interaction torque is used as the reference source. Experimental results demonstrated that the closed-loop system is able to approximate simple second-order behavior, thus approximating the feel of a spring and damper.</EA>
<CC>001B00G07M; 001B40C38</CC>
<FD>Contrôle vibration; Moteur ultrason; Transducteur piézoélectrique; Boucle réaction; Couple moteur; Contact mécanique; Micromoteur; Miniaturisation; Moteur électrique; Commande boucle fermée; Entrée sortie; Modélisation; Etude expérimentale</FD>
<ED>Vibration control; Ultrasonic motors; Piezoelectric transducers; Feedback; Motor torque; Mechanical contacts; Micromotors; Miniaturization; Electric motors; Closed loop control; Input-output; Modelling; Experimental study</ED>
<SD>Par motor</SD>
<LO>INIST-22109.354000170146720010</LO>
<ID>10-0046480</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000686 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000686 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0046480
   |texte=   An Approach to Force-Feedback Control with Traveling Wave Ultrasonic Motor
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024