Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope

Identifieur interne : 000675 ( PascalFrancis/Corpus ); précédent : 000674; suivant : 000676

Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope

Auteurs : Cagdas Denizel Onal ; Metin Sitti

Source :

RBID : Pascal:10-0096187

Descripteurs français

English descriptors

Abstract

In this study, 3-D experimental teleoperated force feedback during contact with nanoscale surfaces is demonstrated using an atomic force microscope (AFM) on the slave side and a haptic device on the master side. To achieve 3-D force feedback, coupling between one of the horizontal forces and the vertical force is a crucial bottleneck. To solve this coupling issue, a novel force decoupling algorithm is proposed. This algorithm uses local surface slopes, an empirical friction force model, and the haptic device motion angle projected onto the surface to estimate the friction value during experiments. With this estimation, it is possible to decouple the three orthogonal forces acting on the tip of the AFM cantilever. Moreover, using an adaptive observer, parameters of the friction model can be changed online, removing the necessity to calibrate the friction model initially. Finally, a modified passivity-based bilateral control is used to reflect the scaled nanoscale forces to the master side and the operator. The performance of the system is demonstrated on experimental results for flat and non-flat, and hard and soft surfaces.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1536-125X
A03   1    @0 IEEE trans. nanotechnol.
A05       @2 9
A06       @2 1
A08 01  1  ENG  @1 Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope
A11 01  1    @1 ONAL (Cagdas Denizel)
A11 02  1    @1 SITTI (Metin)
A14 01      @1 NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University @2 Pittsburgh, PA 15213 @3 USA @Z 1 aut.
A14 02      @1 NanoRobotics Laboratory, Department of Mechanical Engineering and Robotics Institute, Carnegie Mellon University @2 Pittsburgh, PA 15213 @3 USA @Z 2 aut.
A20       @1 46-54
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 27310 @5 354000189224100060
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 27 ref.
A47 01  1    @0 10-0096187
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on nanotechnology
A66 01      @0 USA
C01 01    ENG  @0 In this study, 3-D experimental teleoperated force feedback during contact with nanoscale surfaces is demonstrated using an atomic force microscope (AFM) on the slave side and a haptic device on the master side. To achieve 3-D force feedback, coupling between one of the horizontal forces and the vertical force is a crucial bottleneck. To solve this coupling issue, a novel force decoupling algorithm is proposed. This algorithm uses local surface slopes, an empirical friction force model, and the haptic device motion angle projected onto the surface to estimate the friction value during experiments. With this estimation, it is possible to decouple the three orthogonal forces acting on the tip of the AFM cantilever. Moreover, using an adaptive observer, parameters of the friction model can be changed online, removing the necessity to calibrate the friction model initially. Finally, a modified passivity-based bilateral control is used to reflect the scaled nanoscale forces to the master side and the operator. The performance of the system is demonstrated on experimental results for flat and non-flat, and hard and soft surfaces.
C02 01  X    @0 001D02D11
C03 01  X  FRE  @0 Rétroaction @5 01
C03 01  X  ENG  @0 Feedback regulation @5 01
C03 01  X  SPA  @0 Retroacción @5 01
C03 02  3  FRE  @0 Echelle nanométrique @5 02
C03 02  3  ENG  @0 Nanometer scale @5 02
C03 03  X  FRE  @0 Microscopie force atomique @5 03
C03 03  X  ENG  @0 Atomic force microscopy @5 03
C03 03  X  SPA  @0 Microscopía fuerza atómica @5 03
C03 04  X  FRE  @0 Surface contact @5 04
C03 04  X  ENG  @0 Contact surface @5 04
C03 04  X  SPA  @0 Superficie contacto @5 04
C03 05  X  FRE  @0 Découplage @5 05
C03 05  X  ENG  @0 Decoupling @5 05
C03 05  X  SPA  @0 Desacoplamiento @5 05
C03 06  X  FRE  @0 Algorithme @5 06
C03 06  X  ENG  @0 Algorithm @5 06
C03 06  X  SPA  @0 Algoritmo @5 06
C03 07  X  FRE  @0 Modèle empirique @5 07
C03 07  X  ENG  @0 Empirical model @5 07
C03 07  X  SPA  @0 Modelo empírico @5 07
C03 08  X  FRE  @0 Frottement @5 08
C03 08  X  ENG  @0 Friction @5 08
C03 08  X  SPA  @0 Frotamiento @5 08
C03 09  3  FRE  @0 Système en ligne @5 09
C03 09  3  ENG  @0 On-line systems @5 09
C03 10  X  FRE  @0 Evaluation performance @5 10
C03 10  X  ENG  @0 Performance evaluation @5 10
C03 10  X  SPA  @0 Evaluación prestación @5 10
C03 11  X  FRE  @0 Commande adaptative @5 11
C03 11  X  ENG  @0 Adaptive control @5 11
C03 11  X  SPA  @0 Control adaptativo @5 11
C03 12  X  FRE  @0 Pointe microscope @5 12
C03 12  X  ENG  @0 Microscope tip @5 12
C03 12  X  SPA  @0 Punta microscopio @5 12
C03 13  X  FRE  @0 Interaction pointe surface @5 13
C03 13  X  ENG  @0 Tip surface interaction @5 13
C03 13  X  SPA  @0 Interacción punta superficie @5 13
C03 14  X  FRE  @0 Robotique @5 14
C03 14  X  ENG  @0 Robotics @5 14
C03 14  X  SPA  @0 Robótica @5 14
C03 15  3  FRE  @0 Télémanipulation @5 15
C03 15  3  ENG  @0 Remote handling @5 15
C03 16  X  FRE  @0 Nanomanipulation @4 CD @5 96
C03 16  X  ENG  @0 Nanomanipulation @4 CD @5 96
N21       @1 060

Format Inist (serveur)

NO : PASCAL 10-0096187 INIST
ET : Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope
AU : ONAL (Cagdas Denizel); SITTI (Metin)
AF : NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (1 aut.); NanoRobotics Laboratory, Department of Mechanical Engineering and Robotics Institute, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on nanotechnology ; ISSN 1536-125X; Etats-Unis; Da. 2010; Vol. 9; No. 1; Pp. 46-54; Bibl. 27 ref.
LA : Anglais
EA : In this study, 3-D experimental teleoperated force feedback during contact with nanoscale surfaces is demonstrated using an atomic force microscope (AFM) on the slave side and a haptic device on the master side. To achieve 3-D force feedback, coupling between one of the horizontal forces and the vertical force is a crucial bottleneck. To solve this coupling issue, a novel force decoupling algorithm is proposed. This algorithm uses local surface slopes, an empirical friction force model, and the haptic device motion angle projected onto the surface to estimate the friction value during experiments. With this estimation, it is possible to decouple the three orthogonal forces acting on the tip of the AFM cantilever. Moreover, using an adaptive observer, parameters of the friction model can be changed online, removing the necessity to calibrate the friction model initially. Finally, a modified passivity-based bilateral control is used to reflect the scaled nanoscale forces to the master side and the operator. The performance of the system is demonstrated on experimental results for flat and non-flat, and hard and soft surfaces.
CC : 001D02D11
FD : Rétroaction; Echelle nanométrique; Microscopie force atomique; Surface contact; Découplage; Algorithme; Modèle empirique; Frottement; Système en ligne; Evaluation performance; Commande adaptative; Pointe microscope; Interaction pointe surface; Robotique; Télémanipulation; Nanomanipulation
ED : Feedback regulation; Nanometer scale; Atomic force microscopy; Contact surface; Decoupling; Algorithm; Empirical model; Friction; On-line systems; Performance evaluation; Adaptive control; Microscope tip; Tip surface interaction; Robotics; Remote handling; Nanomanipulation
SD : Retroacción; Microscopía fuerza atómica; Superficie contacto; Desacoplamiento; Algoritmo; Modelo empírico; Frotamiento; Evaluación prestación; Control adaptativo; Punta microscopio; Interacción punta superficie; Robótica
LO : INIST-27310.354000189224100060
ID : 10-0096187

Links to Exploration step

Pascal:10-0096187

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope</title>
<author>
<name sortKey="Onal, Cagdas Denizel" sort="Onal, Cagdas Denizel" uniqKey="Onal C" first="Cagdas Denizel" last="Onal">Cagdas Denizel Onal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>NanoRobotics Laboratory, Department of Mechanical Engineering and Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0096187</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0096187 INIST</idno>
<idno type="RBID">Pascal:10-0096187</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000675</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope</title>
<author>
<name sortKey="Onal, Cagdas Denizel" sort="Onal, Cagdas Denizel" uniqKey="Onal C" first="Cagdas Denizel" last="Onal">Cagdas Denizel Onal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>NanoRobotics Laboratory, Department of Mechanical Engineering and Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on nanotechnology </title>
<title level="j" type="abbreviated">IEEE trans. nanotechnol. </title>
<idno type="ISSN">1536-125X</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on nanotechnology </title>
<title level="j" type="abbreviated">IEEE trans. nanotechnol. </title>
<idno type="ISSN">1536-125X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive control</term>
<term>Algorithm</term>
<term>Atomic force microscopy</term>
<term>Contact surface</term>
<term>Decoupling</term>
<term>Empirical model</term>
<term>Feedback regulation</term>
<term>Friction</term>
<term>Microscope tip</term>
<term>Nanomanipulation</term>
<term>Nanometer scale</term>
<term>On-line systems</term>
<term>Performance evaluation</term>
<term>Remote handling</term>
<term>Robotics</term>
<term>Tip surface interaction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rétroaction</term>
<term>Echelle nanométrique</term>
<term>Microscopie force atomique</term>
<term>Surface contact</term>
<term>Découplage</term>
<term>Algorithme</term>
<term>Modèle empirique</term>
<term>Frottement</term>
<term>Système en ligne</term>
<term>Evaluation performance</term>
<term>Commande adaptative</term>
<term>Pointe microscope</term>
<term>Interaction pointe surface</term>
<term>Robotique</term>
<term>Télémanipulation</term>
<term>Nanomanipulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, 3-D experimental teleoperated force feedback during contact with nanoscale surfaces is demonstrated using an atomic force microscope (AFM) on the slave side and a haptic device on the master side. To achieve 3-D force feedback, coupling between one of the horizontal forces and the vertical force is a crucial bottleneck. To solve this coupling issue, a novel force decoupling algorithm is proposed. This algorithm uses local surface slopes, an empirical friction force model, and the haptic device motion angle projected onto the surface to estimate the friction value during experiments. With this estimation, it is possible to decouple the three orthogonal forces acting on the tip of the AFM cantilever. Moreover, using an adaptive observer, parameters of the friction model can be changed online, removing the necessity to calibrate the friction model initially. Finally, a modified passivity-based bilateral control is used to reflect the scaled nanoscale forces to the master side and the operator. The performance of the system is demonstrated on experimental results for flat and non-flat, and hard and soft surfaces.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1536-125X</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. nanotechnol. </s0>
</fA03>
<fA05>
<s2>9</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ONAL (Cagdas Denizel)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SITTI (Metin)</s1>
</fA11>
<fA14 i1="01">
<s1>NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>NanoRobotics Laboratory, Department of Mechanical Engineering and Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>46-54</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27310</s2>
<s5>354000189224100060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0096187</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on nanotechnology </s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, 3-D experimental teleoperated force feedback during contact with nanoscale surfaces is demonstrated using an atomic force microscope (AFM) on the slave side and a haptic device on the master side. To achieve 3-D force feedback, coupling between one of the horizontal forces and the vertical force is a crucial bottleneck. To solve this coupling issue, a novel force decoupling algorithm is proposed. This algorithm uses local surface slopes, an empirical friction force model, and the haptic device motion angle projected onto the surface to estimate the friction value during experiments. With this estimation, it is possible to decouple the three orthogonal forces acting on the tip of the AFM cantilever. Moreover, using an adaptive observer, parameters of the friction model can be changed online, removing the necessity to calibrate the friction model initially. Finally, a modified passivity-based bilateral control is used to reflect the scaled nanoscale forces to the master side and the operator. The performance of the system is demonstrated on experimental results for flat and non-flat, and hard and soft surfaces.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Surface contact</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Contact surface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Superficie contacto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Découplage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Decoupling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Desacoplamiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modèle empirique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Empirical model</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelo empírico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Frottement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Friction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Frotamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Système en ligne</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>On-line systems</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Commande adaptative</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Adaptive control</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Control adaptativo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Pointe microscope</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Microscope tip</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Punta microscopio</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Interaction pointe surface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Tip surface interaction</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Interacción punta superficie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Télémanipulation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Remote handling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nanomanipulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Nanomanipulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>060</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 10-0096187 INIST</NO>
<ET>Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope</ET>
<AU>ONAL (Cagdas Denizel); SITTI (Metin)</AU>
<AF>NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (1 aut.); NanoRobotics Laboratory, Department of Mechanical Engineering and Robotics Institute, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on nanotechnology ; ISSN 1536-125X; Etats-Unis; Da. 2010; Vol. 9; No. 1; Pp. 46-54; Bibl. 27 ref.</SO>
<LA>Anglais</LA>
<EA>In this study, 3-D experimental teleoperated force feedback during contact with nanoscale surfaces is demonstrated using an atomic force microscope (AFM) on the slave side and a haptic device on the master side. To achieve 3-D force feedback, coupling between one of the horizontal forces and the vertical force is a crucial bottleneck. To solve this coupling issue, a novel force decoupling algorithm is proposed. This algorithm uses local surface slopes, an empirical friction force model, and the haptic device motion angle projected onto the surface to estimate the friction value during experiments. With this estimation, it is possible to decouple the three orthogonal forces acting on the tip of the AFM cantilever. Moreover, using an adaptive observer, parameters of the friction model can be changed online, removing the necessity to calibrate the friction model initially. Finally, a modified passivity-based bilateral control is used to reflect the scaled nanoscale forces to the master side and the operator. The performance of the system is demonstrated on experimental results for flat and non-flat, and hard and soft surfaces.</EA>
<CC>001D02D11</CC>
<FD>Rétroaction; Echelle nanométrique; Microscopie force atomique; Surface contact; Découplage; Algorithme; Modèle empirique; Frottement; Système en ligne; Evaluation performance; Commande adaptative; Pointe microscope; Interaction pointe surface; Robotique; Télémanipulation; Nanomanipulation</FD>
<ED>Feedback regulation; Nanometer scale; Atomic force microscopy; Contact surface; Decoupling; Algorithm; Empirical model; Friction; On-line systems; Performance evaluation; Adaptive control; Microscope tip; Tip surface interaction; Robotics; Remote handling; Nanomanipulation</ED>
<SD>Retroacción; Microscopía fuerza atómica; Superficie contacto; Desacoplamiento; Algoritmo; Modelo empírico; Frotamiento; Evaluación prestación; Control adaptativo; Punta microscopio; Interacción punta superficie; Robótica</SD>
<LO>INIST-27310.354000189224100060</LO>
<ID>10-0096187</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000675 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000675 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0096187
   |texte=   Teleoperated 3-D Force Feedback From the Nanoscale With an Atomic Force Microscope
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024