Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Force-controlled automatic microassembly of tissue engineering scaffolds

Identifieur interne : 000658 ( PascalFrancis/Corpus ); précédent : 000657; suivant : 000659

Force-controlled automatic microassembly of tissue engineering scaffolds

Auteurs : GUOYONG ZHAO ; CHEE LEONG TEE ; DIETMAR WERNER HUTMACHER ; Etienne Burdet

Source :

RBID : Pascal:10-0163769

Descripteurs français

English descriptors

Abstract

This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0960-1317
A03   1    @0 J. micromech. microeng. : (Print)
A05       @2 20
A06       @2 3
A08 01  1  ENG  @1 Force-controlled automatic microassembly of tissue engineering scaffolds
A11 01  1    @1 GUOYONG ZHAO
A11 02  1    @1 CHEE LEONG TEE
A11 03  1    @1 DIETMAR WERNER HUTMACHER
A11 04  1    @1 BURDET (Etienne)
A14 01      @1 Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent @3 SGP @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 Institute of Health and Biomedical Innovation, Queensland University of Technology @3 AUS @Z 3 aut.
A14 03      @1 Department of Bioengineering, Imperial College of Science, Technology and Medicine @2 London, SW7 2AZ @3 GBR @Z 4 aut.
A20       @2 035001.1-035001.11
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 22483 @5 354000181807200010
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 10-0163769
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of micromechanics and microengineering : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.
C02 01  X    @0 001D02D11
C02 02  X    @0 001D12I
C02 03  3    @0 001B00G10C
C02 04  X    @0 001D03F17
C03 01  X  FRE  @0 Mécanique précision @5 06
C03 01  X  ENG  @0 Precision engineering @5 06
C03 01  X  SPA  @0 Mecánica precisión @5 06
C03 02  X  FRE  @0 Génie tissulaire @5 07
C03 02  X  ENG  @0 Tissue engineering @5 07
C03 02  X  SPA  @0 Ingeniería de tejidos @5 07
C03 03  X  FRE  @0 Transducteur enfoui @5 08
C03 03  X  ENG  @0 Embedded transducer @5 08
C03 03  X  SPA  @0 Transductor embebido @5 08
C03 04  X  FRE  @0 Mesure force @5 09
C03 04  X  ENG  @0 Force measurement @5 09
C03 04  X  SPA  @0 Medición esfuerzo @5 09
C03 05  X  FRE  @0 Microassemblage @5 18
C03 05  X  ENG  @0 Microassembling @5 18
C03 05  X  SPA  @0 Micromontaje @5 18
C03 06  X  FRE  @0 Micromanipulation @5 19
C03 06  X  ENG  @0 Micromanipulation @5 19
C03 06  X  SPA  @0 Micromanipulación @5 19
C03 07  X  FRE  @0 Robotique @5 20
C03 07  X  ENG  @0 Robotics @5 20
C03 07  X  SPA  @0 Robótica @5 20
C03 08  X  FRE  @0 Biocompatibilité @5 21
C03 08  X  ENG  @0 Biocompatibility @5 21
C03 08  X  SPA  @0 Biocompatibilidad @5 21
C03 09  X  FRE  @0 Défaut fabrication @5 22
C03 09  X  ENG  @0 Manufacturing defect @5 22
C03 09  X  SPA  @0 Defecto fabricación @5 22
C03 10  X  FRE  @0 Préhenseur @5 23
C03 10  X  ENG  @0 Gripper @5 23
C03 10  X  SPA  @0 Prensor(robot) @5 23
C03 11  X  FRE  @0 Alignement @5 24
C03 11  X  ENG  @0 Alignment @5 24
C03 11  X  SPA  @0 Alineamiento @5 24
C03 12  X  FRE  @0 Sensibilité tactile @5 25
C03 12  X  ENG  @0 Tactile sensitivity @5 25
C03 12  X  SPA  @0 Sensibilidad tactil @5 25
C03 13  X  FRE  @0 Commande force @5 27
C03 13  X  ENG  @0 Force control @5 27
C03 13  X  SPA  @0 Control fuerza @5 27
C03 14  X  FRE  @0 Positionnement @5 33
C03 14  X  ENG  @0 Positioning @5 33
C03 14  X  SPA  @0 Posicionamiento @5 33
N21       @1 109
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0163769 INIST
ET : Force-controlled automatic microassembly of tissue engineering scaffolds
AU : GUOYONG ZHAO; CHEE LEONG TEE; DIETMAR WERNER HUTMACHER; BURDET (Etienne)
AF : Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent/Singapour (1 aut., 2 aut., 4 aut.); Institute of Health and Biomedical Innovation, Queensland University of Technology/Australie (3 aut.); Department of Bioengineering, Imperial College of Science, Technology and Medicine/London, SW7 2AZ/Royaume-Uni (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of micromechanics and microengineering : (Print); ISSN 0960-1317; Royaume-Uni; Da. 2010; Vol. 20; No. 3; 035001.1-035001.11; Bibl. 28 ref.
LA : Anglais
EA : This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.
CC : 001D02D11; 001D12I; 001B00G10C; 001D03F17
FD : Mécanique précision; Génie tissulaire; Transducteur enfoui; Mesure force; Microassemblage; Micromanipulation; Robotique; Biocompatibilité; Défaut fabrication; Préhenseur; Alignement; Sensibilité tactile; Commande force; Positionnement
ED : Precision engineering; Tissue engineering; Embedded transducer; Force measurement; Microassembling; Micromanipulation; Robotics; Biocompatibility; Manufacturing defect; Gripper; Alignment; Tactile sensitivity; Force control; Positioning
SD : Mecánica precisión; Ingeniería de tejidos; Transductor embebido; Medición esfuerzo; Micromontaje; Micromanipulación; Robótica; Biocompatibilidad; Defecto fabricación; Prensor(robot); Alineamiento; Sensibilidad tactil; Control fuerza; Posicionamiento
LO : INIST-22483.354000181807200010
ID : 10-0163769

Links to Exploration step

Pascal:10-0163769

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Force-controlled automatic microassembly of tissue engineering scaffolds</title>
<author>
<name sortKey="Guoyong Zhao" sort="Guoyong Zhao" uniqKey="Guoyong Zhao" last="Guoyong Zhao">GUOYONG ZHAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chee Leong Tee" sort="Chee Leong Tee" uniqKey="Chee Leong Tee" last="Chee Leong Tee">CHEE LEONG TEE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dietmar Werner Hutmacher" sort="Dietmar Werner Hutmacher" uniqKey="Dietmar Werner Hutmacher" last="Dietmar Werner Hutmacher">DIETMAR WERNER HUTMACHER</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Health and Biomedical Innovation, Queensland University of Technology</s1>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burdet, Etienne" sort="Burdet, Etienne" uniqKey="Burdet E" first="Etienne" last="Burdet">Etienne Burdet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Bioengineering, Imperial College of Science, Technology and Medicine</s1>
<s2>London, SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0163769</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0163769 INIST</idno>
<idno type="RBID">Pascal:10-0163769</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000658</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Force-controlled automatic microassembly of tissue engineering scaffolds</title>
<author>
<name sortKey="Guoyong Zhao" sort="Guoyong Zhao" uniqKey="Guoyong Zhao" last="Guoyong Zhao">GUOYONG ZHAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chee Leong Tee" sort="Chee Leong Tee" uniqKey="Chee Leong Tee" last="Chee Leong Tee">CHEE LEONG TEE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dietmar Werner Hutmacher" sort="Dietmar Werner Hutmacher" uniqKey="Dietmar Werner Hutmacher" last="Dietmar Werner Hutmacher">DIETMAR WERNER HUTMACHER</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Health and Biomedical Innovation, Queensland University of Technology</s1>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burdet, Etienne" sort="Burdet, Etienne" uniqKey="Burdet E" first="Etienne" last="Burdet">Etienne Burdet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Bioengineering, Imperial College of Science, Technology and Medicine</s1>
<s2>London, SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of micromechanics and microengineering : (Print)</title>
<title level="j" type="abbreviated">J. micromech. microeng. : (Print)</title>
<idno type="ISSN">0960-1317</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of micromechanics and microengineering : (Print)</title>
<title level="j" type="abbreviated">J. micromech. microeng. : (Print)</title>
<idno type="ISSN">0960-1317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alignment</term>
<term>Biocompatibility</term>
<term>Embedded transducer</term>
<term>Force control</term>
<term>Force measurement</term>
<term>Gripper</term>
<term>Manufacturing defect</term>
<term>Microassembling</term>
<term>Micromanipulation</term>
<term>Positioning</term>
<term>Precision engineering</term>
<term>Robotics</term>
<term>Tactile sensitivity</term>
<term>Tissue engineering</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanique précision</term>
<term>Génie tissulaire</term>
<term>Transducteur enfoui</term>
<term>Mesure force</term>
<term>Microassemblage</term>
<term>Micromanipulation</term>
<term>Robotique</term>
<term>Biocompatibilité</term>
<term>Défaut fabrication</term>
<term>Préhenseur</term>
<term>Alignement</term>
<term>Sensibilité tactile</term>
<term>Commande force</term>
<term>Positionnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0960-1317</s0>
</fA01>
<fA03 i2="1">
<s0>J. micromech. microeng. : (Print)</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Force-controlled automatic microassembly of tissue engineering scaffolds</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUOYONG ZHAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHEE LEONG TEE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DIETMAR WERNER HUTMACHER</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BURDET (Etienne)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Health and Biomedical Innovation, Queensland University of Technology</s1>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Bioengineering, Imperial College of Science, Technology and Medicine</s1>
<s2>London, SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>035001.1-035001.11</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22483</s2>
<s5>354000181807200010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0163769</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of micromechanics and microengineering : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D12I</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G10C</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanique précision</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Precision engineering</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecánica precisión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Génie tissulaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tissue engineering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ingeniería de tejidos</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transducteur enfoui</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Embedded transducer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transductor embebido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mesure force</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Force measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Medición esfuerzo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Microassemblage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Microassembling</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Micromontaje</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Micromanipulation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Micromanipulation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Micromanipulación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Biocompatibilité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Biocompatibility</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Biocompatibilidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Défaut fabrication</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Manufacturing defect</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Defecto fabricación</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Préhenseur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gripper</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Prensor(robot)</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Alignement</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Alignment</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Alineamiento</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Force control</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Positionnement</s0>
<s5>33</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Positioning</s0>
<s5>33</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Posicionamiento</s0>
<s5>33</s5>
</fC03>
<fN21>
<s1>109</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0163769 INIST</NO>
<ET>Force-controlled automatic microassembly of tissue engineering scaffolds</ET>
<AU>GUOYONG ZHAO; CHEE LEONG TEE; DIETMAR WERNER HUTMACHER; BURDET (Etienne)</AU>
<AF>Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent/Singapour (1 aut., 2 aut., 4 aut.); Institute of Health and Biomedical Innovation, Queensland University of Technology/Australie (3 aut.); Department of Bioengineering, Imperial College of Science, Technology and Medicine/London, SW7 2AZ/Royaume-Uni (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of micromechanics and microengineering : (Print); ISSN 0960-1317; Royaume-Uni; Da. 2010; Vol. 20; No. 3; 035001.1-035001.11; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.</EA>
<CC>001D02D11; 001D12I; 001B00G10C; 001D03F17</CC>
<FD>Mécanique précision; Génie tissulaire; Transducteur enfoui; Mesure force; Microassemblage; Micromanipulation; Robotique; Biocompatibilité; Défaut fabrication; Préhenseur; Alignement; Sensibilité tactile; Commande force; Positionnement</FD>
<ED>Precision engineering; Tissue engineering; Embedded transducer; Force measurement; Microassembling; Micromanipulation; Robotics; Biocompatibility; Manufacturing defect; Gripper; Alignment; Tactile sensitivity; Force control; Positioning</ED>
<SD>Mecánica precisión; Ingeniería de tejidos; Transductor embebido; Medición esfuerzo; Micromontaje; Micromanipulación; Robótica; Biocompatibilidad; Defecto fabricación; Prensor(robot); Alineamiento; Sensibilidad tactil; Control fuerza; Posicionamiento</SD>
<LO>INIST-22483.354000181807200010</LO>
<ID>10-0163769</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000658 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000658 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0163769
   |texte=   Force-controlled automatic microassembly of tissue engineering scaffolds
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024